72 research outputs found

    P-bRS: A Physarum-Based Routing Scheme for Wireless Sensor Networks

    Get PDF
    Routing in wireless sensor networks (WSNs) is an extremely challenging issue due to the features of WSNs. Inspired by the large and single-celled amoeboid organism, slime mold Physarum polycephalum, we establish a novel selecting next hop model (SNH). Based on this model, we present a novel Physarum-based routing scheme (P-bRS) for WSNs to balance routing efficiency and energy equilibrium. In P-bRS, a sensor node can choose the proper next hop by using SNH which comprehensively considers the distance, energy residue, and location of the next hop. The simulation results show how P-bRS can achieve the effective trade-off between routing efficiency and energy equilibrium compared to two famous algorithms

    Beyond substrates : strain engineering of ferroelectric membranes

    Get PDF
    Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high-quality substrates. Here, using the ferroelectric BaTiO, production of precisely strain-engineered, substrate-released nanoscale membranes is demonstrated via an epitaxial lift-off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide-metal/ferroelectric/oxide-metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100-nm-thick film). In devices integrated on flexible polymers, enhanced room-temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS-compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth

    Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP) protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents <it>in vitro </it>and <it>in vivo</it>. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms.</p> <p>Methods</p> <p>Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. <it>In vitro </it>studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA) designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)- 2,5-Diphenyltetrazolium Bromide (MTT) assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, <it>in vivo </it>tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment.</p> <p>Results</p> <p>We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen-independent prostate cancer cell lines. Survivin knockdown sensitized these cells to selenium growth inhibition and apoptosis induction. In nude mice bearing PC-3M xenografts, survivin knockdown synergizes with selenium in inhibiting tumor growth.</p> <p>Conclusions</p> <p>Selenium could inhibit the growth of hormone-refractory prostate cancer cells both <it>in vitro </it>and <it>in vivo</it>, but the effects were modest. The growth inhibition was not mediated by downregulating survivin expression. Survivin silencing greatly enhanced the growth inhibitory effects of selenium.</p

    Modifications to sorption and sinking capability of microplastics after chlorination

    No full text
    Chlorination disinfection in water treatments may be highly destructive to microplastics (MPs). Herein, low- and high-dose (concentration–time values at 75 and 9,600 mg min L−1, respectively) chlorination processes were used to simulate short-term chlorination in drinking water treatment plants and long-term residual chlorine reaction in drinking water supply systems, respectively. Both chlorination processes induced modifications to polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) MPs, varying in polymer types and sizes. Oxidized and chlorinated bonds were detected, and destructed surfaces with increased specific surface area and reduced hydrophobicity were observed. As a result, the sorption capacity of all MPs was weakened, e.g., low-dose chlorination (pH 7) depressed the sorption of ciprofloxacin by 6.5 μm PE (Kf from 0.140 to 0.128 L g−1). The sinking behavior of PET, PS, and PVC MPs was enhanced, e.g., the sinking ratio of 200 μm PET increased by ∼30% after low-dose chlorination (pH 7). By contrast, PE tended to float after high-dose chlorination. Furthermore, chlorination of MPs generated various products, which were the degraded fragments from the MP skeleton. In general, chlorination disinfection reduces the potential of MPs as transport vectors of organic contaminants. HIGHLIGHTS Disinfection by chlorination is destructive to microplastics (MPs).; MPs tend to adsorb less ciprofloxacin after chlorination.; MPs, except polythene, tend to sink after chlorination.; Chlorination reduces the potential of MPs as transport vectors of organic contaminants.; Practical dose chlorination presents limited effects on MPs.
    corecore