21 research outputs found

    Update on HER-2 as a target for cancer therapy: HER2/neu peptides as tumour vaccines for T cell recognition

    Get PDF
    During the past decade there has been renewed interest in the use of vaccine immunotherapy for the treatment of cancer. This review focuses on HER2/neu, a tumour-associated antigen that is overexpressed in 10–40% of breast cancers and other carcinomata. Several immunogenic HER2/neu peptides recognized by T lymphocytes have been identified to be included in cancer vaccines. Some of these peptides have been assessed in clinical trials of patients with breast and ovarian cancer. Although it has been possible to detect immunological responses against the peptides in the immunized patients, no clinical responses have so far been described. Immunological tolerance to self-antigens like HER2/neu may limit the functional immune responses against them. It will be of interest to determine whether immune responses against HER2/neu epitopes can be of relevance to cancer treatment

    Cytotoxic T-cell precursor frequencies to HER-2 (369 – 377) in patients with HER-2/neu-positive epithelial tumours

    Get PDF
    HER-2/neu oncoprotein contains several major histocompatibility complex class I-restricted epitopes, which are recognised by cytotoxic T lymphocyte (CTL) on autologous tumours and therefore can be used in immune-based cancer therapies. Of these, the most extensively studied is HER-2(9(369)). In the present report, we used dendritic cells pulsed with HER-2(9(369)) to stimulate, in the presence of IL-7 and IL-12, the production of IFN-gamma by patients' CTL detected by the enzyme-linked immunosorbent spot-assay. Frequencies of peptide-specific precursors were estimated in HLA-A2, HLA-A3 and HLA-A26 patients with HER-2/neu-positive (+) breast, ovarian, lung, colorectal and prostate cancers and healthy individuals. We found increased percentages of such precursors in HLA-A2 (25%) and HLA-A26 (30%) patients, which were significantly higher (60%) in HLA-A3 patients. Our results demonstrate for the first time that pre-existing immunity to HER-2(9(369)) occurs in patients with colorectal, lung and prostate cancer. They also suggest that HER-2(9(369)) can be recognised by CTL, besides HLA-A2, also in the context of HLA-A3 and HLA-A26, thus increasing the applicability of HER-2(9(369))-based vaccinations in a considerably broader patients' population.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Properties of monocytes generated from haematopoietic CD34+ stem cells from bone marrow of colon cancer patients

    Get PDF
    Monocytes exhibit direct and indirect antitumour activities and may be potentially useful for various forms of adoptive cellular immunotherapy of cancer. However, blood is a limited source of them. This study explored whether monocytes can be obtained from bone marrow haematopoietic CD34(+) stem cells of colon cancer patients, using previously described protocol of expansion and differentiation to monocytes of cord blood-derived CD34(+) haematopoietic progenitors. Data show that in two-step cultures, the yield of cells was increased approximately 200-fold, and among these cells, up to 60 % of CD14(+) monocytes were found. They consisted of two subpopulations: CD14(++)CD16(+) and CD14(+)CD16(−), at approximately 1:1 ratio, that differed in HLA-DR expression, being higher on the former. No differences in expression of costimulatory molecules were observed, as CD80 was not detected, while CD86 expression was comparable. These CD14(+) monocytes showed the ability to present recall antigens (PPD, Candida albicans) and neoantigens expressed on tumour cells and tumour-derived microvesicles (TMV) to autologous CD3(+) T cells isolated from the peripheral blood. Monocytes also efficiently presented the immunodominant HER-2/neu(369–377) peptide (KIFGSLAFL), resulting in the generation of specific cytotoxic CD8(+) T lymphocytes (CTL). The CD14(++)CD16(+) subset exhibited enhanced cytotoxicity, though nonsignificant, towards tumour cells in vitro. These observations indicate that generation of monocytes from CD34(+) stem cells of cancer patients is feasible. To our knowledge, it is the first demonstration of such approach that may open a way to obtain autologous monocytes for alternative forms of adaptive and adoptive cellular immunotherapy of cancer

    High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays

    Get PDF
    Background: Inactivation of the p53 pathway that controls cell cycle progression, apoptosis and senescence, has been proposed to occur in virtually all human tumors and p53 is the protein most frequently mutated in human cancer. However, the mutational status of p53 in melanoma is still controversial; to clarify this notion we analysed the largest series of melanoma samples reported to date. Methodology/Principal Findings: Immunohistochemical analysis of more than 180 melanoma specimens demonstrated that high levels of p53 are expressed in the vast majority of cases. Subsequent sequencing of the p53 exons 5–8, however, revealed only in one case the presence of a mutation. Nevertheless, by means of two different p53 reporter constructs we demonstrate transcriptional inactivity of wild type p53 in 6 out of 10 melanoma cell lines; the 4 other p53 wild type melanoma cell lines exhibit p53 reporter gene activity, which can be blocked by shRNA knock down of p53. Conclusions/Significance: In melanomas expressing high levels of wild type p53 this tumor suppressor is frequently inactivated at transcriptional level

    Pooled peptides from HER-2/neu-overexpressing primary ovarian tumours induce CTL with potent antitumour responses in vitro and in vivo

    Get PDF
    Unfractionated peptides (MW: up to 10 kDa), derived from HLA-A2.1 positive (+) HER-2/neu-overexpressing primary tumour cell acid cell extracts (ACE), were successfully used to generate in vitro cytotoxic T lymphocytes (CTL). Primary tumour cells were collected from peritoneal malignant effusions of patients with ovarian cancer. Acid cell extracts-induced CTL specifically lysed in an HLA-A2-restricted manner HER-2/neu+ autologous primary tumour cells as well as HER-2/neu+ tumour cell lines. In addition, adoptive transfer of such CTL significantly prolonged the survival of SCID mice xenografted with HLA-A2.1+, HER-2/neu+ human breast and ovarian tumour cell lines. Acid cell extracts collected from HLA-A2.1+ HER-2/neu negative (−) primary ovarian tumours induced HLA-A2.1-restricted CTL with weak in vitro and in vivo antitumour capacity, suggesting that HER-2/neu peptides within ACE from HER-2/neu-overexpressing primary ovarian tumour cells are immunodominant. The results presented herein serve as a rationale for the initiation of vaccination studies in patients with HER-2/neu-overexpressing ovarian tumours utilising autologous tumour-derived ACE

    Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct

    Get PDF
    Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63–71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307–319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that long-lasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8+ IFN-γ+ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines
    corecore