3,890 research outputs found

    On the Origin of the Wide HI Absorption Line Toward Sgr A*

    Full text link
    We have imaged a region of about 5' extent surrounding Sgr A* in the HI 21 cm-line absorption using the Very Large Array. A Gaussian decomposition of the optical depth spectra at positions within about 2' (approx. 5 pc at 8.5 kpc) of Sgr A* detects a wide line underlying the many narrow absorption lines. The wide line has a mean peak optical depth of 0.32 +/- 0.12 centered at a mean velocity of V(lsr) = -4 +/- 15 km/s. The mean full width at half maximum is 119 +/- 42 km/s. Such a wide line is absent in the spectra at positions beyond about 2' from Sgr A*. The position-velocity diagrams in optical depth reveal that the wide line originates in various components of the circumnuclear disk (radius approx. 1.3') surrounding Sgr A*. These components contribute to the optical depth of the wide line in different velocity ranges. The position-velocity diagrams do not reveal any diffuse feature which could be attributed to a large number of HI clouds along the line of sight to Sgr A*. Consequently, the wide line has no implications either to a global population of shocked HI clouds in the Galaxy or to the energetics of the interstellar medium as was earlier thought.Comment: LaTeX, 12 pages and 9 figures, accepted for publication in J. Astrophys. Ast

    The Sasa-Satsuma higher order nonlinear Schrodinger equation and its bilinearization and multi-soliton solutions

    Full text link
    Higher order and multicomponent generalizations of the nonlinear Schrodinger equation are important in various applications, e.g., in optics. One of these equations, the integrable Sasa-Satsuma equation, has particularly interesting soliton solutions. Unfortunately the construction of multi-soliton solutions to this equation presents difficulties due to its complicated bilinearization. We discuss briefly some previous attempts and then give the correct bilinearization based on the interpretation of the Sasa-Satsuma equation as a reduction of the three-component Kadomtsev-Petvishvili hierarchy. In the process we also get bilinearizations and multi-soliton formulae for a two component generalization of the Sasa-Satsuma equation (the Yajima-Oikawa-Tasgal-Potasek model), and for a (2+1)-dimensional generalization.Comment: 13 pages in RevTex, added reference

    Mapping of fishery resources in trawling grounds along the Malabar-Konkan coast

    Get PDF
    Two categories of bottom trawl units are in operation along the Malabar-Konkan coast. The first category comprises of small boats (<9.75 m OAL) conducting daily trips operating trawl nets with codend mesh size of 10-20 mm and catch generally prawns, flatfishes and other finfishes

    Stokes tomography of radio pulsar magnetospheres. II. Millisecond pulsars

    Full text link
    The radio polarization characteristics of millisecond pulsars (MSPs) differ significantly from those of non-recycled pulsars. In particular, the position angle (PA) swings of many MSPs deviate from the S-shape predicted by the rotating vector model, even after relativistic aberration is accounted for, indicating that they have non-dipolar magnetic geometries, likely due to a history of accretion. Stokes tomography uses phase portraits of the Stokes parameters as a diagnostic tool to infer a pulsar's magnetic geometry and orientation. This paper applies Stokes tomography to MSPs, generalizing the technique to handle interpulse emission. We present an atlas of look-up tables for the Stokes phase portraits and PA swings of MSPs with current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models. We compare our look-up tables to data from 15 MSPs and find that the Stokes phase portraits for a current-modified dipole approximately match several MSPs whose PA swings are flat or irregular and cannot be reconciled with the standard axisymmetric rotating vector model. PSR J1939+2134 and PSR J0437-4715 are modelled in detail. The data from PSR J1939+2134 at 0.61\,GHz can be fitted well with a current-modified dipole at (α,i)=(22±2,80±1)(\alpha, i) = (22 \pm 2^\circ, 80 \pm 1^\circ) and emission altitude 0.4 rLCr_\text{LC}. The fit is less accurate for PSR J1939+2134 at 1.414\,GHz, and for PSR J0437-4715 at 1.44\,GHz, indicating that these objects may have a more complicated magnetic field geometry, such as a localized surface anomaly or a polar magnetic mountain.Comment: 38 pages, 33 figures, accepted for publication by MNRA

    Symmetrically coupled higher-order nonlinear Schroedinger equations: singularity analysis and integrability

    Full text link
    The integrability of a system of two symmetrically coupled higher-order nonlinear Schr\"{o}dinger equations with parameter coefficients is tested by means of the singularity analysis. It is proven that the system passes the Painlev\'{e} test for integrability only in ten distinct cases, of which two are new. For one of the new cases, a Lax pair and a multi-field generalization are obtained; for the other one, the equations of the system are uncoupled by a nonlinear transformation.Comment: 12 pages, LaTeX2e, IOP style, final version, to appear in J.Phys.A:Math.Ge

    Does Sub-millisecond Pulsar XTE J1739-285 Contain a Low Magnetic Neutron Star or Quark Star ?

    Full text link
    With the possible detection of the fastest spinning nuclear-powered pulsar XTE J1739-285 of frequency 1122 Hz (0.8913 ms), it arouses us to constrain the mass and radius of its central compact object and to imply the stellar matter compositions: neutrons or quarks. Spun-up by the accreting materials to such a high rotating speed, the compact star should have either a small radius or short innermost stable circular orbit. By the empirical relation between the upper kHz quasi-periodic oscillation frequency and star spin frequency, a strong constraint on mass and radius is obtained as 1.51 solar masses and 10.9 km, which excludes most equations of states (EOSs) of normal neutrons and strongly hints the star promisingly to be a strange quark star. Furthermore, the star magnetic field is estimated to be about 4×107(G)<B<109(G)4\times10^{7} (G) < B < 10^{9} (G) , which reconciles with those of millisecond radio pulsars, revealing the clues of the evolution linkage of two types of astrophysical objects.Comment: 10 pages, 2 figures, accepted by PASP 200

    Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations

    Full text link
    The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the evolution of slowly varying wave packets in nonlinear dissipative media. A front (shock) is a transient layer between a plane-wave state and a zero background. We report exact solutions for domain walls, i.e., pairs of fronts with opposite polarities, in a system of two coupled CGLEs, which describe transient layers between semi-infinite domains occupied by each component in the absence of the other one. For this purpose, a modified Hirota bilinear operator, first proposed by Bekki and Nozaki, is employed. A novel factorization procedure is applied to reduce the intermediate calculations considerably. The ensuing system of equations for the amplitudes and frequencies is solved by means of computer-assisted algebra. Exact solutions for mutually-locked front pairs of opposite polarities, with one or several free parameters, are thus generated. The signs of the cubic gain/loss, linear amplification/attenuation, and velocity of the coupled-front complex can be adjusted in a variety of configurations. Numerical simulations are performed to study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres

    Stokes tomography of radio pulsar magnetospheres. I. Linear polarization

    Full text link
    Polarimetric studies of pulsar radio emission traditionally concentrate on how the Stokes vector (I, Q, U, V) varies with pulse longitude, with special emphasis on the position angle (PA) swing of the linearly polarized component. The interpretation of the PA swing in terms of the rotating vector model is limited by the assumption of an axisymmetric magnetic field and the degeneracy of the output with respect to the orientation and magnetic geometry of the pulsar; different combinations of the latter two properties can produce similar PA swings. This paper introduces Stokes phase portraits as a supplementary diagnostic tool with which the orientation and magnetic geometry can be inferred more accurately. The Stokes phase portraits feature unique patterns in the I-Q, I-U, and Q-U planes, whose shapes depend sensitively on the magnetic geometry, inclination angle, beam and polarization patterns, and emission altitude. We construct look-up tables of Stokes phase portraits and PA swings for pure and current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models, L/I = \cos \theta_0 and L/I = \sin \theta_0, where \theta_0 is the colatitude of the emission point. We compare our look-up tables to the measured phase portraits of 24 pulsars in the European Pulsar Network online database. We find evidence in 60% of the objects that the radio emission region may depart significantly from low altitudes, even when the PA swing is S-shaped and/or the pulse-width-period relation is well satisfied. On the other hand, the data are explained adequately if the emission altitude exceeds ~10% of the light cylinder radius. We conclude that Stokes phase portraits should be analysed concurrently with the PA swing and pulse profiles in future when interpreting radio pulsar polarization data.Comment: 60 pages, 58 figures, submitted to MNRAS, accepted 13 Oct 201
    corecore