55,054 research outputs found
: An Excellent Candidate of Tetraquarks
We analyze various possible interpretations of the narrow state
which lies 100 MeV above threshold. This interesting state
decays mainly into instead of . If this relative branching
ratio is further confirmed by other experimental groups, we point out that the
identification of either as a state or more generally
as a state in the representation is probably
problematic. Instead, such an anomalous decay pattern strongly indicates
is a four quark state in the representation
with the quark content . We discuss its
partners in the same multiplet, and the similar four-quark states composed of a
bottom quark . Experimental searches of other members
especially those exotic ones are strongly called for
On a Localized Riemannian Penrose Inequality
Consider a compact, orientable, three dimensional Riemannian manifold with
boundary with nonnegative scalar curvature. Suppose its boundary is the
disjoint union of two pieces: the horizon boundary and the outer boundary,
where the horizon boundary consists of the unique closed minimal surfaces in
the manifold and the outer boundary is metrically a round sphere. We obtain an
inequality relating the area of the horizon boundary to the area and the total
mean curvature of the outer boundary. Such a manifold may be thought as a
region, surrounding the outermost apparent horizons of black holes, in a
time-symmetric slice of a space-time in the context of general relativity. The
inequality we establish has close ties with the Riemannian Penrose Inequality,
proved by Huisken and Ilmanen, and by Bray.Comment: 16 page
Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study
Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects
Recommended from our members
Life cycle assessment of white roof and sedum-tray garden roof for office buildings in China
White roof (WR) and Sedum lineare tray garden roof (STGR) have been convinced to improve the energy-efficiency and provide various benefits for conventional impervious grey roofs. Some national and local standards have standardized and recommended these technologies in existing building retrofits, however, they do not include assessment and choice of a particular roof retrofit in different climates. This paper presents a 40-year life-cycle cost analysis (LCCA) of an office building roof retrofitted by adding either WR or STGR over an existing grey roof in five cities, located in four Chinese climate zones. The LCCA find that the WR retrofits exhibit positive life-cycle net savings (NS) in warm winter zones, ranging 5.7–35.1 CNY/m 2 , and STGR retrofits have negative NS of -81.3– -16.7 CNY/m 2 in all climate zones. The NS of both WR and STGR generally tend to improve as one moves from the coldest cities to the warmest cities. LCCA results suggest that adding new building codes concerning crediting or prescribing WR and STGR retrofits into office buildings with grey roofs in hot summer climate zones and warm winter zone in China, respectively. And featured by more specific requirements, the localized Technical Norms help promote the implementation of new building codes
Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building
This study presents the experimental measurement of the energy consumption of three top-floor air-conditioned rooms in a typical office building in Chongqing, which is a mountainous city in the hot-summer and cold-winter zone of China, to examine the energy performance of white and sedum-tray garden roofs. The energy consumption of the three rooms was measured from September 2014 to September 2015 by monitoring the energy performance (temperature distributions of the roofs, evaporation, heat fluxes, and energy consumption) and indoor air temperature. The rooms had the same construction and appliances, except that one roof top was black, one was white, and one had a sedum-tray garden roof. This study references the International Performance Measurement and Verification Protocol (IPMVP) to calculate and compare the energy savings of the three kinds of roofs. The results indicate that the energy savings ratios of the rooms with the sedum-tray garden roof and with the white roof were 25.0% and 20.5%, respectively, as compared with the black-roofed room, in the summer; by contrast, the energy savings ratios were −9.9% and −2.7%, respectively, in the winter. Furthermore, Annual conditioning energy savings of white roof (3.9 kWh/m2) were 1.6 times the energy savings for the sedum-tray garden roof. It is evident that white roof is a preferable choice for office buildings in Chongqing. Additionally, The white roof had a reflectance of 0.58 after natural aging owing to the serious air pollution worsened its thermal performance, and the energy savings reduced by 0.033 kWh/m2·d. Evaporation was also identified to have a significant effect on the energy savings of the sedum-tray garden roof
Neutrino-Mixing-Generated Lepton Asymmetry and the Primordial He Abundance
It has been proposed that an asymmetry in the electron neutrino sector may be
generated by resonant active-sterile neutrino transformations during Big Bang
Nucleosynthesis (BBN). We calculate the change in the primordial He yield
resulting from this asymmetry, taking into account both the time evolution
of the and distribution function and the spectral
distortions in these. We calculate this change in two schemes: (1) a lepton
asymmetry directly generated by mixing with a lighter right-handed
sterile neutrino ; and (2) a lepton asymmetry generated by a
or transformation
which is subsequently partially converted to an asymmetry in the
sector by a matter-enhanced active-active neutrino
transformation. In the first scheme, we find that the percentage change in
is between -1% and 9% (with the sign depending on the sign of the asymmetry),
bounded by the Majorana mass limit m_{\nu_e}\la 1 eV. In the second scheme,
the maximal percentage reduction in is 2%, if the lepton number asymmetry
in neutrinos is positive; Otherwise, the percentage increase in is \la 5%
for m^2_{\nu_\mu,\nu_\tau}-m^2_{\nu_s}\la 10^4 eV. We conclude that the
change in the primordial He yield induced by a neutrino-mixing-generated
lepton number asymmetry can be substantial in the upward direction, but limited
in the downward direction.Comment: 15 pages, 7 figures, submitted to PR
Photorefractive incoherent-to-coherent optical converter
Photorefractive materials have been extensively used in
recent years as real-time recording media for optical holography.(^1,2) One prospective application of real-time holography is in the area of optical information processing; for example, the correlation between two mutually incoherent images has recently been demonstrated in real time in a four-wave mixing
geometry. (^3) Often, however, the information to be processed exists only in incoherent form. High performance spatial light modulators(^4) are thus necessary in many optical information processing systems to convert incoherent images to coherent replicas for subsequent processing. We report in this Communication the successful demonstration of real-time incoherent-to-coherent images transduction through the use of holographic recording in photorefractive crystals. Several possible configurations and experimental results are presented
Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China
Understanding the geochemical cycling of sulfur in sediments is important because it can have implications for both modern environments (e.g., deterioration of water quality) and interpretation of the ancient past (e.g., sediment C/S ratios can be used as indicators of palaeodepositional environment). This study investigates the geochemical characteristics of sulfur, iron, and organic carbon in fluvial and coastal surface sediments of the Laizhou Bay region, China. A total of 63 sediment samples were taken across the whole Laizhou Bay marine region and the 14 major tidal rivers draining into it. Acid volatile sulfur, chromium (II)-reducible sulfur and elemental sulfur, total organic carbon, and total nitrogen were present in higher concentrations in the fluvial sediment than in the marine sediment of Laizhou Bay. The composition of reduced inorganic sulfur in surface sediments was dominated by acid volatile sulfur and chromium (II)-reducible sulfur. In fluvial sediments, sulfate reduction and formation of reduced inorganic sulfur were controlled by TOC and reactive iron synchronously. High C/S ratios in the marine sediments indicate that the diagenetic processes in Laizhou Bay have been affected by rapid deposition of sediment from the Yellow River in recent decades
On quasi-local Hamiltonians in General Relativity
We analyse the definition of quasi-local energy in GR based on a Hamiltonian
analysis of the Einstein-Hilbert action initiated by Brown-York. The role of
the constraint equations, in particular the Hamiltonian constraint on the
timelike boundary, neglected in previous studies, is emphasized here. We argue
that a consistent definition of quasi-local energy in GR requires, at a
minimum, a framework based on the (currently unknown) geometric well-posedness
of the initial boundary value problem for the Einstein equations.Comment: 9 page
Can the age discrepancies of neutron stars be circumvented by an accretion-assisted torque?
It is found that 1E 1207.4-5209 could be a low-mass bare strange star if its
small radius or low altitude cyclotron formation can be identified. The age
problems of five sources could be solved by a fossil-disk-assisted torque. The
magnetic dipole radiation dominates the evolution of PSR B1757-24 at present,
and the others are in propeller (or tracking) phases.Comment: ApJL accepted, or at
http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.ht
- …