262 research outputs found

    A STUDY OF METHOD DEVELOPMENT, VALIDATION AND FORCED DEGRADATION FOR SIMULTANEOUS QUANTIFICATION OF CABOZANTINIB AND NIVOLUMAB IN BULK AND PHARMACEUTICAL DOSAGE FORM BY RP-HPLC

    Get PDF
    Objective: The present paper describes a simple, accurate, and precise reversed-phase high-performance liquid chromatography (HPLC) method for rapid and simultaneous quantification of cabozantinib (CZT) and nivolumab (NVM) in bulk and pharmaceutical dosage form. Methods: The chromatographic separation was achieved on Luna C18 (150 mm×4.6 mm, 3.5 μm). Mobile phase contained a mixture of 0.1% orthophosphoric acid and acetonitrile in the ratio of 50:50 v/v, flow rate 1.0 ml/min, and ultraviolet detection at 222 nm. Results: The proposed method shows a good linearity in the concentration range of 20–300 μg/ml for CZT and 5–75 μg/ml for NVM under optimized conditions. Precision and recovery study results are in between 98 and 102%. In the entire robustness conditions, percentage relative standard deviation is <2.0%. Degradation has minimum effect in stress condition and solutions are stable up to 24 h. Conclusion: This method is validated for different parameters such as precision, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ), ruggedness, robustness, and forced degradation study were determined according to the International Conference of Harmonization (ICH) Q2B guidelines. All the parameters of validation were found to be within the acceptance range of ICH guidelines. Since there is no HPLC method reported in the literature for the estimation of CZT and NVM in pharmaceutical dosage forms, there is a need to develop quantitative methods under different conditions to achieve improvement in sensitivity, selectivity, etc. The author declares the interest to develop a validation and forced degradation for simultaneous quantification of CZT and NVM

    Qualitative and quantitative phytochemical screening and in vitro anti oxidant and anti microbial activities of Elephantopus scaber Linn.

    Get PDF
    Preliminary phytochemical analysis and quantification of total phenols, In-vitro antioxidant and anti microbial activities of the different fractions (hydro alcoholic, hexane, ethyl acetate and methanol) of Elephantopus scaber were carried out against five selected pathogenic bacteria and three fungal species. The plant fraction possesses steroids, triterpinoids, saponins, flavonoides, carbohydrates, glycosides and oils. For total phenolic content gallic acid was taken as a standard, the ethyl acetate fraction contains rich phenolic content than other fractions and the methanol fraction shows more DPPH, superoxide and hydroxyl radical scavenging activity. In Anti-microbial activity study all fractions showed good inhibition zone against three organisms i.e., Escherichia coli, Staphylococcus aureus Klebsiella pneumonia among the other test organisms along with Candida spp (fungal organism)

    Implementation of Pattern Matching Algorithm for Multimedia Files in Mail Function Detection

    Full text link
    Now a days internet and mail based file transfer has increased enormously due to this server space required will be highly and also occurs largely. In existing system if we upload the same file which is present in the server also get uploaded and duplication occurs. We used a pattern matching algorithm it eliminate duplication and also to avoid time wastage in uploading the same file present in the server. During file upload pattern will be matched. If pattern matched file won't be uploaded again it will simply matched the existing file it avoids uploading the file again. If pattern doesn't match it allow uploading the file. From this we save the memory space in the server and duplication doesn't occur

    System for Locating Faults in Multiterminal Transmission Lines

    Get PDF
    In this project, the creation and application of computer-based fault detection methods for transmission lines with multiple terminals are discussed.These methods are part of a fault-finding system that precisely locates the fault site by using voltage and current signal measurements from smart electronic devices installed on transmission-line terminals. The transformer loading, connection type, and electrical characteristics are all data that the algorithms have access to. The power system components used by the fault-location techniques are likewise presented in this project’s phase component models

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    Keeping in Touch with One's Self: Multisensory Mechanisms of Self-Consciousness

    Get PDF
    BACKGROUND: The spatial unity between self and body can be disrupted by employing conflicting visual-somatosensory bodily input, thereby bringing neurological observations on bodily self-consciousness under scientific scrutiny. Here we designed a novel paradigm linking the study of bodily self-consciousness to the spatial representation of visuo-tactile stimuli by measuring crossmodal congruency effects (CCEs) for the full body. METHODOLOGY/PRINCIPAL FINDINGS: We measured full body CCEs by attaching four vibrator-light pairs to the trunks (backs) of subjects who viewed their bodies from behind via a camera and a head mounted display (HMD). Subjects made speeded elevation (up/down) judgments of the tactile stimuli while ignoring light stimuli. To modulate self-identification for the seen body subjects were stroked on their backs with a stick and the felt stroking was either synchronous or asynchronous with the stroking that could be seen via the HMD. We found that (1) tactile stimuli were mislocalized towards the seen body (2) CCEs were modulated systematically during visual-somatosensory conflict when subjects viewed their body but not when they viewed a body-sized object, i.e. CCEs were larger during synchronous than during asynchronous stroking of the body and (3) these changes in the mapping of tactile stimuli were induced in the same experimental condition in which predictable changes in bodily self-consciousness occurred. CONCLUSIONS/SIGNIFICANCE: These data reveal that systematic alterations in the mapping of tactile stimuli occur in a full body illusion and thus establish CCE magnitude as an online performance proxy for subjective changes in global bodily self-consciousness

    A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research

    Get PDF
    This paper summarizes recent developments in audio and tactile feedback based assistive technologies targeting the blind community. Current technology allows applications to be efficiently distributed and run on mobile and handheld devices, even in cases where computational requirements are significant. As a result, electronic travel aids, navigational assistance modules, text-to-speech applications, as well as virtual audio displays which combine audio with haptic channels are becoming integrated into standard mobile devices. This trend, combined with the appearance of increasingly user- friendly interfaces and modes of interaction has opened a variety of new perspectives for the rehabilitation and training of users with visual impairments. The goal of this paper is to provide an overview of these developments based on recent advances in basic research and application development. Using this overview as a foundation, an agenda is outlined for future research in mobile interaction design with respect to users with special needs, as well as ultimately in relation to sensor-bridging applications in genera

    How many motoric body representations can we grasp?

    Get PDF
    At present there is a debate on the number of body representations in the brain. The most commonly used dichotomy is based on the body image, thought to underlie perception and proven to be susceptible to bodily illusions, versus the body schema, hypothesized to guide actions and so far proven to be robust against bodily illusions. In this rubber hand illusion study we investigated the susceptibility of the body schema by manipulating the amount of stimulation on the rubber hand and the participant’s hand, adjusting the postural configuration of the hand, and investigating a grasping rather than a pointing response. Observed results showed for the first time altered grasping responses as a consequence of the grip aperture of the rubber hand. This illusion-sensitive motor response challenges one of the foundations on which the dichotomy is based, and addresses the importance of illusion induction versus type of response when investigating body representations

    When Right Feels Left: Referral of Touch and Ownership between the Hands

    Get PDF
    Feeling touch on a body part is paradigmatically considered to require stimulation of tactile afferents from the body part in question, at least in healthy non-synaesthetic individuals. In contrast to this view, we report a perceptual illusion where people experience “phantom touches” on a right rubber hand when they see it brushed simultaneously with brushes applied to their left hand. Such illusory duplication and transfer of touch from the left to the right hand was only elicited when a homologous (i.e., left and right) pair of hands was brushed in synchrony for an extended period of time. This stimulation caused the majority of our participants to perceive the right rubber hand as their own and to sense two distinct touches – one located on the right rubber hand and the other on their left (stimulated) hand. This effect was supported by quantitative subjective reports in the form of questionnaires, behavioral data from a task in which participants pointed to the felt location of their right hand, and physiological evidence obtained by skin conductance responses when threatening the model hand. Our findings suggest that visual information augments subthreshold somatosensory responses in the ipsilateral hemisphere, thus producing a tactile experience from the non-stimulated body part. This finding is important because it reveals a new bilateral multisensory mechanism for tactile perception and limb ownership
    corecore