1,432 research outputs found

    Fluctuation, time-correlation function and geometric Phase

    Get PDF
    We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast'' system. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.Comment: Latex, 12 pages, no figures, submitted to J. Phys. A: Math & Ge

    Symmetry crossover and excitation thresholds at the neutral-ionic transition of the modified Hubbard model

    Full text link
    Exact ground states, charge densities and excitation energies are found using valence bond methods for N-site modified Hubbard models with uniform spacing. At the neutral-ionic transition (NIT), the ground state has a symmetry crossover in 4n, 4n+2 rings with periodic and antiperiodic boundary conditions, respectively. The modified Hubbard model has a continuous NIT between a diamagnetic band insulator on the paired side and a paramagnetic Mott insulator on the covalent side. The singlet-triplet (ST), singlet-singlet (SS) and charge gaps for finite N indicate that the ST and SS gaps close at the NIT with increasing U and that the charge gap vanishes only there. Finite-N excitations constrain all singularities to about 0.1t of the symmetry crossover. The NIT is interpreted as a localized ground state (gs) with finite gaps on the paired side and an extended gs with vanishing ST and SS gaps on the covalent side. The charge gap and charge stiffness indicate a metallic gs at the transition that, however, is unconditionally unstable to dimerization.Comment: 12 pages, including 8 figure

    Dynamics of two atoms coupled to a cavity field

    Get PDF
    We investigate the interaction of two two-level atoms with a single mode cavity field. One of the atoms is exactly at resonance with the field, while the other is well far from resonance and hence is treated in the dispersive limit. We find that the presence of the non-resonant atom produces a shift in the Rabi frequency of the resonant atom, as if it was detuned from the field. We focus on the discussion of the evolution of the state purity of each atom.Comment: LaTex, 2 figure

    General impossible operations in quantum information

    Full text link
    We prove a general limitation in quantum information that unifies the impossibility principles such as no-cloning and no-anticloning. Further, we show that for an unknown qubit one cannot design a universal Hadamard gate for creating equal superposition of the original and its complement state. Surprisingly, we find that Hadamard transformations exist for an unknown qubit chosen either from the polar or equatorial great circles. Also, we show that for an unknown qubit one cannot design a universal unitary gate for creating unequal superpositions of the original and its complement state. We discuss why it is impossible to design a controlled-NOT gate for two unknown qubits and discuss the implications of these limitations.Comment: 15 pages, no figures, Discussion about personal quantum computer remove

    Observing Nucleon Decay in Lead Perchlorate

    Get PDF
    Lead perchlorate, part of the OMNIS supernova neutrino detector, contains two nuclei, 208Pb and 35Cl, that might be used to study nucleon decay. Both would produce signatures that will make them especially useful for studying less-well-studied neutron decay modes, e.g., those in which only neutrinos are emitted.Comment: 6 pages, 2 figure
    • …
    corecore