54 research outputs found

    Thermal Design of Power Semiconductor Modules for Mobile Communication Systems

    Get PDF
    We will describe the thermal performance of power semiconductor module, which consists of hetero-junction bipolar transistors (HBTs), for mobile communication systems. We calculate the thermal resistance between the HBT fingers and the bottom surface of a multi-layer printed circuit board (PCB) using a finite element method (FEM). We applied a steady state analysis to evaluate the influence of design parameters on thermal resistance of the module. We found that the thickness of GaAs substrate, the thickness of multi-layer circuit board, the thermal conductivity of bonding material under GaAs substrate, and misalignment of thermal vias between each layer of PCB are the dominant parameter in thermal resistance of the module.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    The Anisotropy of Cosmic Ray Arrival Direction around 10^18eV

    Get PDF
    Anisotropy in the arrival directions of cosmic rays around 10^{18}eV is studied using data from the Akeno 20 km^2 array and the Akeno Giant Air Shower Array (AGASA), using a total of about 216,000 showers observed over 15 years above 10^{17}eV. In the first harmonic analysis, we have found significant anisotropy of ∼\sim 4 % around 10^{18}eV, corresponding to a chance probability of ∼10−5\sim 10^{-5} after taking the number of independent trials into account. With two dimensional analysis in right ascension and declination, this anisotropy is interpreted as an excess of showers near the directions of the Galactic Center and the Cygnus region. This is a clear evidence for the existence of the galactic cosmic ray up to the energy of 10^{18}eV. Primary particle which contribute this anisotropy may be proton or neutron.Comment: 4pages, three figures, to appear in Procedings of 26th ICRC(Salt Lake City

    Small-scale anisotropy of cosmic rays above 10^19eV observed with the Akeno Giant Air Shower Array

    Get PDF
    With the Akeno Giant Air Shower Array (AGASA), 581 cosmic rays above 10^19eV, 47 above 4 x 10^19eV, and 7 above 10^20eV are observed until August 1998. Arrival direction distribution of these extremely high energy cosmic rays has been studied. While no significant large-scale anisotropy is found on the celestial sphere, some interesting clusters of cosmic rays are observed. Above 4 x 10^19eV, there are one triplet and three doublets within separation angle of 2.5^o and the probability of observing these clusters by a chance coincidence under an isotropic distribution is smaller than 1 %. Especially the triplet is observed against expected 0.05 events. The cos(\theta_GC) distribution expected from the Dark Matter Halo model fits the data as well as an isotropic distribution above 2 x 10^19eV and 4 x 10^19eV, but is a poorer fit than isotropy above 10^19eV. Arrival direction distribution of seven 10^20eV cosmic rays is consistent with that of lower energy cosmic rays and is uniform. Three of seven are members of doublets above about 4 x 10^19eV.Comment: 40 pages, 12 figure, AASTeX *** Authors found a typo on Table 2 -- Energy of event 94/07/06 **
    • …
    corecore