6,277 research outputs found
Spin Hall Effect in a Spinor Dipolar Bose-Einstein Condensate
We theoretically show that the spin Hall effect arises in a Bose-Einstein
condensate (BEC) of neutral atoms interacting via the magnetic dipole-dipole
interactions (MDDIs). Since the MDDI couples the total spin angular momentum
and the relative orbital angular momentum of two colliding atoms, it works as a
spin-orbit coupling. Thus, when we prepare a BEC in a magnetic sublevel ,
thermally and quantum-mechanically excited atoms in the and states
feel the Lorentz-like foces in the opposite directions. This is the origin for
the emergence of the the spin Hall effect. We define the mass-current and
spin-current operators from the equations of continuity and calculate the spin
Hall conductivity from the off-diagonal current-current correlation function
within the Bogoliubov approximation. We find that the correction of the current
operators due to the MDDI significantly contributes to the spin Hall
conductivity. Possible experimental situation is also discussed.Comment: 11 pages, 6 figure
A-site driven ferroelectricity in strained ferromagnetic L2NiMnO6 thin films
We report on theoretical and experimental investigation of A-site driven
ferroelectricity in ferromagnetic La2NiMnO6 thin films grown on SrTiO3
substrates. Structural analysis and density functional theory calculations show
that epitaxial strain stretches the rhombohedral La2NiMnO6 crystal lattice
along the [111]cubic direction, triggering a displacement of the A-site La ions
in the double perovskite lattice. The lattice distortion and the A-site
displacements stabilize a ferroelectric polar state in ferromagnetic La2NiMnO6
crystals. The ferroelectric state only appears in the rhombohedral La2NiMnO6
phase, where MnO6 and NiO6 octahedral tilting is inhibited by the 3-fold
crystal symmetry. Electron localization mapping showed that covalent bonding
with oxygen and 6s orbital lone pair formation are negligible in this material.Comment: in pres
Studies on the Methods for Testing the Effectiveness of Fungicides. II.The Use of Pot Cultured Rice Plants for Testing Spray Materials against Helminthostorium Oryzae Infection.*
Fermi Surface Study of Quasi-Two-Dimensional Organic Conductors by Magnetooptical Measurements
Magnetooptical measurements of several quasi-two-dimensional (q2D) organic
conductors, which have simple Fermi surface structure, have been performed by
using a cavity perturbation technique. Despite of the simple Fermi surface
structure, magnetooptical resonance results show a dramatic difference for each
sample. Cyclotron resonances (CR) were observed for q-(BEDT-TTF)2I3 and
(BEDT-TTF)3Br(pBIB), while periodic orbit resonances (POR) were observed for
(BEDT-TTF)2Br(DIA) and (BEDT-TTF)3Cl(DFBIB). The selection of the resonance
seems to correspond with the skin depth for each sample. The effective mass of
POR seems to have a mass enhancement due to the many-body effect, while
effective mass of CR is independent of the strength of the electron-electron
interaction. The scattering time deduced from each resonance's linewidth will
be also presented.Comment: 10 pages, 8 figures, to be published to J. Phys. Soc. Jpn Vol.72 No.1
(accepted
Asian chemical outflow to the Pacific in late spring observed during the PEACE-B aircraft mission
Magnetic field-induced phase transitions in a weakly coupled s = 1/2 quantum spin dimer system BaCrO
By using bulk magnetization, electron spin resonance (ESR), heat capacity,
and neutron scattering techniques, we characterize the thermodynamic and
quantum phase diagrams of BaCrO. Our ESR measurements indicate that
the low field paramagnetic ground state is a mixed state of the singlet and the
S = 0 triplet for . This suggests the presence of an intra-dimer
Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the
c-axis
Spin-filter tunnel junction with matched Fermi surfaces
Efficient injection of spin-polarized current into a semiconductor is a basic
prerequisite for building semiconductor-based spintronic devices. Here, we use
inelastic electron tunneling spectroscopy to show that the efficiency of
spin-filter-type spin injectors is limited by spin scattering of the tunneling
electrons. By matching the Fermi-surface shapes of the current injection source
and target electrode material, spin injection efficiency can be significantly
increased in epitaxial ferromagnetic insulator tunnel junctions. Our results
demonstrate that not only structural but also Fermi-surface matching is
important to suppress scattering processes in spintronic devices.Comment: 5 pages, 4 figure
- …
