164 research outputs found

    Chlorinated and brominated polycyclic aromatic hydrocarbons in ambient air: seasonal variation, profiles, potential sources, and size distribution

    Get PDF
    Chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs, respectively) are a new derivative group of PAHs. These halogenated PAHs (Halo-PAHs) have been reported to be carcinogenic and are considered emerging persistent organic pollutants. Gaining a clear understanding of the distribution and behavior of these ubiquitous organic pollutants is essential for the control and mitigation of their emission into the environment. However, research into the characteristics of Halo-PAHs in the atmosphere has been somewhat limited. This review paper thus aims to provide an overview of the seasonal patterns, profiles, potential sources, and particle-size distributions of atmospheric ClPAHs and BrPAHs with 3-5 rings. Most previous studies have focused on particulate Halo-PAHs and reported that their levels are higher during the cold season than during the warm season, with this seasonal variation more apparent for ClPAHs than for BrPAHs. In terms of their phase distribution, ClPAHs and BrPAHs share a similar trend, with their gaseous concentrations highest in summer and lowest in winter and their particulate concentrations exhibiting the opposite trend. Halo-PAH profiles have been shown to differ between sampling locations, possibly reflecting differences in the potential sources present at these sites, e.g., coal burning, traffic emissions, and industrial activity. The majority of Halo-PAHs tend to accumulate as ultrafine particles with an aerodynamic diameter of less than 1.0 mu m. Overall, a detailed understanding of the characteristics of Halo-PAHs in the atmosphere has yet to be achieved; hence, further research on atmospheric Halo-PAHs is necessary

    Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    Get PDF
    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site

    Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments

    Get PDF
    Microplastics (<5 mm particles) occur within both engineered and natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers, and estuaries. While a significant proportion of microplastic pollution is likely sequestered within freshwater environments, these habitats also constitute an important conduit of microscopic polymer particles to oceans worldwide. The quantity of aquatic microplastic waste is predicted to dramatically increase over the next decade, but the fate and biological implications of this pollution are still poorly understood. A growing body of research has aimed to characterize the formation, composition, and spatiotemporal distribution of microplastic-associated (“plastisphere”) microbial biofilms. Plastisphere microorganisms have been suggested to play significant roles in pathogen transfer, modulation of particle buoyancy, and biodegradation of plastic polymers and co-contaminants, yet investigation of these topics within freshwater environments is at a very early stage. Here, what is known about marine plastisphere assemblages is systematically compared with up-to-date findings from freshwater habitats. Through analysis of key differences and likely commonalities between environments, we discuss how an integrated view of these fields of research will enhance our knowledge of the complex behavior and ecological impacts of microplastic pollutants

    Comparative histomorphometric analysis between α-Tcp cement and ÎČ-Tcp/Ha granules in the bone repair of rat calvaria

    Get PDF
    This study compared the effect of two bioceramics on the process of bone repair: &#945;-tricalcium phosphate (&#945;-TCP) cement and &#946;-tricalcium phosphate hydroxyapatite particles (&#946;-TCP/HA). Calvarial defects were created in 50 rats, divided into two groups (&#945; and &#946;/HA). Software was used at 7, 21, 60, 90 and 120 days to assess bone formation. Mean new bone formation rates were as follows: &#945; group, 1.6% at 7 days, 5.24% at 21 days, 24% at 60 days, 30.21% at 90 days and 50.59% at 120 days; &#946;/HA group, 1.94% at 7 days, 2.53% at 21 days, 12.47% at 60 days, 26.84% at 90 days and 38.82% at 120 days; control group, 0.15% at 7 days, 10.12% at 21 days, 15.10% at 60 days, 18.94% at 90 days, 48.50% at 120 days. Both materials are osteoconductive and biocompatible. Perhaps the larger rate of new bone formation observed in the &#945;-TCP group, it also occurs in the &#946;-TCP/HA group within a longer time period

    The organelle of differentiation in embryos: the cell state splitter

    Full text link

    Research for PVC Manufacturing Technology

    No full text
    • 

    corecore