1,609 research outputs found

    Frustrated electron liquids in the Hubbard model

    Get PDF
    The ground state of the Hubbard model is studied within the constrained Hilbert space where no order parameter exists. The self-energy of electrons is decomposed into the single-site and multisite self-energies. The calculation of the single-site self-energy is mapped to a problem of self-consistently determining and solving the Anderson model. When an electron reservoir is explicitly considered, it is proved that the single-site self-energy is that of a normal Fermi liquid even if the multisite self-energy is anomalous. Thus, the ground state is a normal Fermi liquid in the supreme single-site approximation (S^3A). In the strong-coupling regime, the Fermi liquid is stabilized by the Kondo effect in the S^3A and is further stabilized by the Fock-type term of the superexchange interaction or the resonating-valence-bond (RVB) mechanism beyond the S^3A. The stabilized Fermi liquid is frustrated as much as an RVB spin liquid in the Heisenberg model. It is a relevant unperturbed state that can be used to study a normal or anomalous Fermi liquid and an ordered state in the whole Hilbert space by Kondo lattice theory. Even if higher-order multisite terms than the Fock-type term are considered, the ground state cannot be a Mott insulator. It can be merely a gapless semiconductor even if the multisite self-energy is so anomalous that it is divergent at the chemical potential. A Mott insulator is only possible as a high temperature phase.Comment: 11 pages, no figur

    Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells

    Full text link
    We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting. The theory introduces a valley coupling parameter, vvv_v, which encapsulates the physics of the quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The resulting formalism provides rather simple analytical results for several geometries of interest, including a finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas. Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate. The latter may pose a numerical challenge for atomistic techniques like tight-binding, because of its two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical. We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR

    Momentum dependence of the energy gap in the superconducting state of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu)

    Full text link
    The energy gap of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu) was probed by angle resolved photoemission spectroscopy (ARPES) using a vacuum ultraviolet laser (photon energy 6.994 eV) or He I resonance line (21.218 eV) as photon source. The results show that the gap around the node at sufficiently low temperatures can be well described by a monotonic d-wave gap function for both samples and the gap of the R=La sample is larger reflecting the higher Tc. However, an abrupt deviation from the d-wave gap function and an opposite R dependence for the gap size were observed around the antinode, which represent a clear disentanglement between the antinodal pseudogap and the nodal superconducting gap.Comment: Submitted as the proceedings of LT2

    A novel human hair protein fiber prepared by watery hybridization spinning

    Get PDF
    This is a preprint of an article published in [Hirao, Y; Ohkawa, K; Yamamoto, H; Fujii, T.,A novel human hair protein fiber prepared by watery hybridization spinning,MACROMOLECULAR MATERIALS AND ENGINEERING,Vol 290,165-171(2005)]ArticleMACROMOLECULAR MATERIALS AND ENGINEERING. 290(3): 165-171 (2005)journal articl

    Resonant X-Ray Scattering from the Quadrupolar Ordering Phase of CeB_6

    Full text link
    We theoretically investigate the origin of the resonant x-ray scattering (RXS) signal near the Ce LIIIL_{III} absorption edge in the quadrupolar ordering phase of CeB6_6, considering the intersite interaction between the Γ8\Gamma_8 states in the initial state. The anisotropic charge distribution of the 4f4f states modulates the 5d5d states through the intra-atomic Coulomb interaction and thereby generates a large RXS superlattice intensity. The temperature and magnetic field dependence indicates that the induced dipolar and octupolar orders have little influence on the RXS spectra, in good agreement with the recent experiment.Comment: 4 pages, 4 figure

    Evaluation of the microseismic motion at the KAGRA site based on the ocean wave data

    Full text link
    The microseismic motion, which is the ambient ground vibration caused by ocean waves, affects ground-based gravitational detectors. In this study, we characterized the properties of the microseismic motion at the KAGRA site and the ocean waves at 13 coasts of Japan, such as the seasonal variation and the correlation between them. As a result, it almost succeeded to explain the microseismic motion at the KAGRA site by the principal components of the ocean wave data. One possible application of this study is the microseismic forecast and its example is also shown
    corecore