852 research outputs found
Revisiting the role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization
Using energetic (9–212 keV/e) ion flux data obtained by the Geotail spacecraft, Ono et al. (2009) statistically examined changes in the energy density of H+ and O+ ions in the near-Earth plasma sheet during substorm-associated dipolarization. They found that ions are nonadiabatically accelerated by the electric field induced by the magnetic field fluctuations whose frequencies are close to their gyrofrequencies. The present paper revisits this result and finds it still holds
Divergent Thermal Conductivity in Three-dimensional Nonlinear lattices
Heat conduction in three-dimensional nonlinear lattices is investigated using
a particle dynamics simulation. The system is a simple three-dimensional
extension of the Fermi-Pasta-Ulam (FPU-) nonlinear lattices, in
which the interparticle potential has a biquadratic term together with a
harmonic term. The system size is , and the heat is made to
flow in the direction the Nose-Hoover method. Although a linear
temperature profile is realized, the ratio of enerfy flux to temperature
gradient shows logarithmic divergence with . The autocorrelation function of
energy flux is observed to show power-law decay as ,
which is slower than the decay in conventional momentum-cnserving
three-dimensional systems (). Similar behavior is also observed in
the four dimensional system.Comment: 4 pages, 5 figures. Accepted for publication in J. Phys. Soc. Japan
Letter
Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study
We have used molecular dynamics to calculate the thermal conductivity of
symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in
size (up to ~4 nm wide and ~10 nm long). For symmetric nanoribbons, the
calculated thermal conductivity (e.g. ~2000 W/m-K @400K for a 1.5 nm {\times}
5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally
measured value for graphene. We have investigated the effects of edge chirality
and found that nanoribbons with zigzag edges have appreciably larger thermal
conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons,
we have found significant thermal rectification. Among various
triangularly-shaped GNRs we investigated, the GNR with armchair bottom edge and
a vertex angle of 30{\deg} gives the maximal thermal rectification. We also
studied the effect of defects and found that vacancies and edge roughness in
the nanoribbons can significantly decrease the thermal conductivity. However,
substantial thermal rectification is observed even in the presence of edge
roughness.Comment: 13 pages, 5 figures, slightly expanded from the published version on
Nano Lett. with some additional note
Finite thermal conductivity in 1d lattices
We discuss the thermal conductivity of a chain of coupled rotators, showing
that it is the first example of a 1d nonlinear lattice exhibiting normal
transport properties in the absence of an on-site potential. Numerical
estimates obtained by simulating a chain in contact with two thermal baths at
different temperatures are found to be consistent with those ones based on
linear response theory. The dynamics of the Fourier modes provides direct
evidence of energy diffusion. The finiteness of the conductivity is traced back
to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis
of two variants of this model.Comment: 4 pages, 3 postscript figure
Carbon superatom thin films
Assembling clusters on surfaces has emerged as a novel way to grow thin films
with targeted properties. In particular, it has been proposed from experimental
findings that fullerenes deposited on surfaces could give rise to thin films
retaining the bonding properties of the incident clusters. However the
microscopic structure of such films is still unclear. By performing quantum
molecular dynamics simulations, we show that C_28 fullerenes can be deposited
on a surface to form a thin film of nearly defect free molecules, which act as
carbon superatoms. Our findings help clarify the structure of disordered small
fullerene films and also support the recently proposed hyperdiamond model for
solid C_28.Comment: 13 pages, RevTeX, 2 figures available as black and white PostScript
files; color PostScript and/or gif files available upon reques
Stability of gold nanowires at large Au-Au separations
The unusual structural stability of gold nanowires at large separations of
gold atoms is explained from first-principles quantum mechanical calculations.
We show that undetected light atoms, in particular hydrogen, stabilize the
experimentally observed structures, which would be unstable in pure gold wires.
The enhanced cohesion is due to the partial charge transfer from gold to the
light atoms. This finding should resolve a long-standing controversy between
theoretical predictions and experimental observations.Comment: 7 pages, 3 figure
Network structure and dynamics of hydrogenated amorphous silicon
In this paper we discuss the application of current it ab initio computer
simulation techniques to hydrogenated amorphous silicon (a-Si:H). We begin by
discussing thermal fluctuation in the number of coordination defects in the
material, and its temperature dependence. We connect this to the ``fluctuating
bond center detachment" mechanism for liberating H bonded to Si atoms. Next,
from extended thermal MD simulation, we illustrate various mechanisms of H
motion. The dynamics of the lattice is then linked to the electrons, and we
point out that the squared electron-lattice coupling (and the thermally-induced
mean square variation in electron energy eigenvalues) is robustly proportional
to the localization of the conjugate state, if localization is measured with
inverse participation ratio. Finally we discuss the Staebler-Wronski effect
using these methods, and argue that a sophisticated local heating picture
(based upon reasonable calculations of the electron-lattice coupling and
molecular dynamic simulation) explains significant aspects of the phenomenon.Comment: 10 pages, 5 figures, accepted in J. Non. Cryst. So
- …