163 research outputs found

    Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in <it>Calca </it>-/- mice.</p> <p>Methods</p> <p>We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL/6J wild-type (WT) mice and twenty <it>Calca </it>-/- mice. The mice were divided into six groups: WT without UHMWPE particles (Group 1), WT with UHMWPE particles (Group 2), <it>Calca </it>-/- mice without UHMWPE particles (Group 3), <it>Calca </it>-/- mice with UHMWPE particles (Group 4), <it>Calca </it>-/- mice without UHMWPE particles and calcitonin substitution (Group 5), and <it>Calca </it>-/- mice with UHMWPE particle implantation and calcitonin substitution (Group 6). Analytes were extracted from serum and urine. Bone resorption was measured by bone histomorphometry. The number of osteoclasts was determined by counting the tartrate-resistant acid phosphatase (TRACP) + cells.</p> <p>Results</p> <p>Bone resorption was significantly increased in <it>Calca </it>-/- mice compared with their corresponding WT. The eroded surface in <it>Calca </it>-/- mice with particle implantation was reduced by 20.6% after CT substitution. Osteoclast numbers were significantly increased in <it>Calca </it>-/- mice after particle implantation. Serum OPG (osteoprotegerin) increased significantly after CT substitution.</p> <p>Conclusions</p> <p>As anticipated, <it>Calca </it>-/- mice show extensive osteolysis compared with wild-type mice, and CT substitution reduces particle-induced osteolysis.</p

    The Inhibitory Effect of Salmon Calcitonin on Tri-Iodothyronine Induction of Early Hypertrophy in Articular Cartilage

    Get PDF
    Salmon calcitonin has chondroprotective effect both in vitro and in vivo, and is therefore being tested as a candidate drug for cartilage degenerative diseases. Recent studies have indicated that different chondrocyte phenotypes may express the calcitonin receptor (CTR) differentially. We tested for the presence of the CTR in chondrocytes from tri-iodothyronin (T3)-induced bovine articular cartilage explants. Moreover, investigated the effects of human and salmon calcitonin on the explants.Early chondrocyte hypertrophy was induced in bovine articular cartilage explants by stimulation over four days with 20 ng/mL T3. The degree of hypertrophy was investigated by molecular markers of hypertrophy (ALP, IHH, COLX and MMP13), by biochemical markers of cartilage turnover (C2M, P2NP and AGNxII) and histology. The expression of the CTR was detected by qPCR and immunohistochemistry. T3-induced explants were treated with salmon or human calcitonin. Calcitonin down-stream signaling was measured by levels of cAMP, and by the molecular markers.Compared with untreated control explants, T3 induction increased expression of the hypertrophic markers (p<0.05), of cartilage turnover (p<0.05), and of CTR (p<0.01). Salmon, but not human, calcitonin induced cAMP release (p<0.001). Salmon calcitonin also inhibited expression of markers of hypertrophy and cartilage turnover (p<0.05).T3 induced early hypertrophy of chondrocytes, which showed an elevated expression of the CTR and was thus a target for salmon calcitonin. Molecular marker levels indicated salmon, but not human, calcitonin protected the cartilage from hypertrophy. These results confirm that salmon calcitonin is able to modulate the CTR and thus have chondroprotective effects

    Role of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading

    Get PDF
    Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP(8-37), for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP(8-37) was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP(8-37) both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP(8-37) administration.CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton

    Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs

    Get PDF
    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.This work was supported by the Portuguese Foundation for Science and Technology (FCT) project PTDC/BIA-BCM/114395/2009, by the European Regional Development Fund through COMPETE and FCT under the project β€˜β€˜PEst-C/MAR/LA0015/2011.’’ RCF is in receipt of an FCT grant (SFRH/BPD/89811/2012) and JCRC is supported by auxiliary research contract FCT Pluriannual funds attributed to CCMAR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore