218 research outputs found

    Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells

    Get PDF
    Alpha-1-adrenergic receptors (α1-ARs) regulate coronary arterial blood flow by binding catecholamines, norepinephrine (NE), and epinephrine (EPI), causing vasoconstriction when the endothelium is disrupted. Among the three α1-AR subtypes (α1A, α1B, and α1D), the α1D subtype predominates in human epicardial coronary arteries and is functional in human coronary smooth muscle cells (SMCs). However, the presence or function of α1-ARs on human coronary endothelial cells (ECs) is unknown. Here we tested the hypothesis that human epicardial coronary ECs express functional α1-ARs. Cultured human epicardial coronary artery ECs were studied using quantitative real-time reverse transcription polymerase chain reaction, radioligand binding, immunoblot, and 3H-thymidine incorporation. The α1B-subtype messenger ribonucleic acid (mRNA) was predominant in cultured human epicardial coronary ECs (90–95% of total α1-AR mRNA), and total α1-AR binding density in ECs was twice that in coronary SMCs. Functionally, NE and EPI through the α1B subtype activated extracellular signal-regulated kinase (ERK) in ECs, stimulated phosphorylation of EC endothelial nitric oxide synthase (eNOS), and increased deoxyribonucleic acid (DNA) synthesis. These results are the first to demonstrate α1-ARs on human coronary ECs and indicate that the α1B subtype is predominant. Our findings provide another potential mechanism for adverse cardiac effects of drug antagonists that nonselectively inhibit all three α1-AR subtypes

    The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis

    Get PDF
    VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis

    Induction of vasculogenesis in breast cancer models

    Get PDF
    Recently, there have been reports of postnatal vasculogenesis in cases of ischaemia models. The aim of the present study is to provide evidence of postnatal vasculogenesis in breast-cancer–bearing mice. Based on cell surface antigen expression, we isolated endothelial precursor cells from bone marrow, peripheral blood and tumour-infiltrating cells from mice that had received six human breast cancer xenografts. In all three areas (bone marrow, peripheral blood and tumour-infiltrating cells), endothelial precursor cell population was elevated in all transplanted mice. Differentiation and migration activities of endothelial precursor cells were measured by comparing levels of the endothelial precursor cell maturation markers Flk-1, Flt-1, Tie2, VE-cadherin and CD31 among these three areas. The endothelial precursor cell population was 14% or greater in the gated lymphocyte-size fraction of the inflammatory breast cancer xenograft named WIBC-9, which exhibits a hypervascular structure and de novo formation of vascular channels, namely vasculogenic mimicry (Shirakawa et al, 2001). In vitro, bone marrow-derived endothelial precursor cells from four human breast cancer xenografts proliferated and formed multiple clusters of spindle-shaped attaching cells on a vitronectin-coated dish. The attaching cells, which incorporated DiI-labelled acetylated low-density lipoprotein (DiI-acLDL) and were negative for Mac-1. The putative bone marrow derived endothelial precursor cell subset, which was double positive of CD34 and Flk-1, and comparative bone marrow derived CD34 positive with Flk-1 negative subset were cultured. The former subset incorporated DiI-acLDL and were integrated with HUVECs. Furthermore, they demonstrated significantly higher levels of murine vascular endothelial growth factor and interleukin-8 in culture supernatant on time course by enzyme-linked immunosorbent assay. These findings constitute direct evidence that breast cancer induces postnatal vasculogenesis in vivo

    Augmentation of Neovascularizaiton in Hindlimb Ischemia by Combined Transplantation of Human Embryonic Stem Cells-Derived Endothelial and Mural Cells

    Get PDF
    BACKGROUND: We demonstrated that mouse embryonic stem (ES) cells-derived vascular endothelial growth factor receptor-2 (VEGF-R2) positive cells could differentiate into both endothelial cells (EC) and mural cells (MC), and termed them as vascular progenitor cells (VPC). Recently, we have established a method to expand monkey and human ES cells-derived VPC with the proper differentiation stage in a large quantity. Here we investigated the therapeutic potential of human VPC-derived EC and MC for vascular regeneration. METHODS AND RESULTS: After the expansion of human VPC-derived vascular cells, we transplanted these cells to nude mice with hindlimb ischemia. The blood flow recovery and capillary density in ischemic hindlimbs were significantly improved in human VPC-derived EC-transplanted mice, compared to human peripheral and umbilical cord blood-derived endothelial progenitor cells (pEPC and uEPC) transplanted mice. The combined transplantation of human VPC-derived EC and MC synergistically improved blood flow of ischemic hindlimbs remarkably, compared to the single cell transplantations. Transplanted VPC-derived vascular cells were effectively incorporated into host circulating vessels as EC and MC to maintain long-term vascular integrity. CONCLUSIONS: Our findings suggest that the combined transplantation of human ES cells-derived EC and MC can be used as a new promising strategy for therapeutic vascular regeneration in patients with tissue ischemia

    Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer

    Get PDF
    Circulating endothelial cells (CECs) as well as bone-marrow-derived endothelial precursor cells (EPC) play an important role in neovascularisation and tumour growth. To study the impact of neoadjuvant chemotherapy on the amounts of CEC and their precursor cells, mature CEC and their progenitors were quantified by flow cytometry in peripheral blood of breast cancer patients during anthracycline and/or taxane based neoadjuvant chemotherapy and subsequent surgery in comparison to age-matched healthy controls. Cell numbers were tested for correlation with serum levels of angiopoietin-2, erythropoietin, endostatin, endoglin, VEGF and sVCAM-1 as well as clinical and pathological features of breast cancer disease. Circulating endothelial cells were significantly elevated in breast cancer patients and decreased during chemotherapy, whereas EPC (CD34+/VEGFR-2+) as well as their progenitor cell population CD133+/CD34+ and the population of CD34+ stem cells increased. Concomitantly with the increase of progenitor cells an increase of VEGF, erythropoietin and angiopoietin-2 was observed. These data suggest that chemotherapy can only reduce the amounts of mature CEC, probably reflecting detached cells from tumour vessels, whereas the EPC and their progenitors are mobilised by chemotherapy. Since this mobilisation of EPC may contribute to tumour neovascularisation an early antiangiogenic therapy in combination with chemotherapy could be beneficial for the success of cancer therapy

    Human Blood Vessel–Derived Endothelial Progenitors for Endothelialization of Small Diameter Vascular Prosthesis

    Get PDF
    BACKGROUND:Coronary bypass graft failure as a result of acute thrombosis and intimal hyperplasia has been the major challenge in surgical procedures involving small-diameter vascular prosthesis. Coating synthetic grafts with patients' own endothelial cells has been suggested to improve the patency rate and overall success of bypass surgeries. METHODOLOGY/PRINCIPAL FINDINGS:We isolated endothelial progenitor cells (EPCs) from leftover pieces of human saphenous vein/mammary artery. We demonstrate that EPCs can be expanded to generate millions of cells under low-density culture conditions. Exposure to high-density conditions induces differentiation to endothelial cell phenotype. EPC-derived endothelial cells show expression of CD144high, CD31, and vWF. We then assessed the ability of differentiated endothelial cells to adhere and grow on small diameter expanded polytetrafluoroethylene (ePTFE) tubings. Since ePTFE tubings are highly hydrophobic, we optimized protocols to introduce hydrophilic groups on luminal surface of ePTFE tubings. We demonstrate here a stepwise protocol that involves introduction of hydrophilic moieties and coating with defined ECM components that support adhesion of endothelial cells, but not of blood platelets. CONCLUSION/SIGNIFICANCE:Our data confirms that endothelial progenitors obtained from adult human blood vessels can be expanded in vitro under xenoprotein-free conditions, for potential use in endothelialization of small diameter ePTFE grafts. These endothelialized grafts may represent a promising treatment strategy for improving the clinical outcome of small-caliber vascular grafts in cardiac bypass surgeries
    corecore