345 research outputs found

    Bottom-Up Approach to Moduli Dynamics in Heavy Gravitino Scenario : Superpotential, Soft Terms and Sparticle Mass Spectrum

    Full text link
    The physics of moduli fields is examined in the scenario where the gravitino is relatively heavy with mass of order 10 TeV, which is favored in view of the severe gravitino problem. The form of the moduli superpotential is shown to be determined, if one imposes a phenomenological requirement that no physical CP phase arise in gaugino masses from conformal anomaly mediation. This bottom-up approach allows only two types of superpotential, each of which can have its origins in a fundamental underlying theory such as superstring. One superpotential is the sum of an exponential and a constant, which is identical to that obtained by Kachru et al (KKLT), and the other is the racetrack superpotential with two exponentials. The general form of soft supersymmetry breaking masses is derived, and the pattern of the superparticle mass spectrum in the minimal supersymmetric standard model is discussed with the KKLT-type superpotential. It is shown that the moduli mediation and the anomaly mediation make comparable contributions to the soft masses. At the weak scale, the gaugino masses are rather degenerate compared to the minimal supergravity, which bring characteristic features on the superparticle masses. In particular, the lightest neutralino, which often constitutes the lightest superparticle and thus a dark matter candidate, is a considerable admixture of gauginos and higgsinos. We also find a small mass hierarchy among the moduli, gravitino, and superpartners of the standard-model fields. Cosmological implications of the scenario are briefly described.Comment: 45 pages, 10 figures, typos correcte

    Lepton Flavor Violation and Cosmological Constraints on R-parity Violation

    Full text link
    In supersymmetric standard models R-parity violating couplings are severely constrained, since otherwise they would erase the existing baryon asymmetry before the electroweak transition. It is often claimed that this cosmological constraint can be circumvented if the baryon number and one of the lepton flavor numbers are sufficiently conserved in these R-parity violating couplings, because B/3-L_i for each lepton flavor is separately conserved by the sphaleron process. We discuss the effect of lepton flavor violation on the B-L conservation, and show that even tiny slepton mixing angles \theta_{12} \gsim {\cal O}(10^{-4}) and \theta_{23}, \theta_{13}\gsim {\cal O}(10^{-5}) will spoil the separate B/3-L_i conservation. In particular, if lepton flavor violations are observed in experiments such as MEG and B-factories, it will imply that all the R-parity violating couplings must be suppressed to avoid the B-L erasure. We also discuss the implication for the decay of the lightest MSSM particle at the LHC.Comment: 21 pages, 7 figures. v2: minor change

    Broadband ferromagnetic resonance of Ni81Fe19 wires using a rectifying effect

    Full text link
    The broadband ferromagnetic resonance measurement using the rectifying effect of Ni81Fe19 wire has been investigated. One wire is deposited on the center strip line of the coplanar waveguide (CPW) and the other one deposited between two strip lines of CPW. The method is based on the detection of the magnetoresistance oscillation due to the magnetization dynamics induced by the radio frequency field. The magnetic field dependences of the resonance frequency and the rectification spectrum are presented and analytically interpreted on the standpoint of a uniform magnetization precession model.Comment: 33pages, 8 figures. submitte

    Development of an Ambulatory Device for Monitoring Posture Change and Walking Speed for Use in Rehabilitation

    Get PDF

    Impaired tissue homing by the Ikzf3N159S variant is mediated by interfering with Ikaros function

    Get PDF
    AIOLOS, encoded by IKZF3, is a member of the IKZF family of proteins that plays an important role in regulating late B-cell differentiation. Human individuals heterozygous for the AIOLOS p.N160S variant displayed impaired humoral immune responses as well as impaired B and T cell development. We have previously reported that a mouse strain harboring an Ikzf3N159S allele that corresponds to human IKZF3N160S recapitulated immune-deficient phenotypes, such as impaired B cell development and loss of CD23 expression. In this study, we investigated the effect of the Ikzf3N159S variant and found that B1a cell development was impaired in Ikzf3N159S/N159S mice. In addition, CD62L expression was severely decreased in both B and T lymphocytes by the Ikzf3N159S mutation, in a dose-dependent manner. Mixed bone marrow chimera experiments have revealed that most immunodeficient phenotypes, including low CD62L expression, occur in intrinsic cells. Interestingly, while Ikzf3N159S/N159S lymphocytes were still present in the spleen, they were completely outcompeted by control cells in the lymph nodes, suggesting that the capacity for homing or retention in the lymph nodes was lost due to the Ikzf3N159S mutation. The homing assay confirmed severely decreased homing abilities to lymph nodes of Ikzf3N159S/N159S B and T lymphocytes but selective enrichment of CD62L expressing Ikzf3N159S/N159S lymphocytes in lymph nodes. This finding suggests that impaired CD62L expression is the major reason for the impaired homing capacity caused by the Ikzf3N159S mutation. Interestingly, an excess amount of Ikaros, but not Aiolos, restored CD62L expression in Ikzf3N159S/N159S B cells. Together with the loss of CD62L expression due to Ikaros deficiency, the AiolosN159S mutant protein likely interferes with Ikaros function through heterodimerization, at least in activating the Sell gene encoding CD62L expression. Thus, our results revealed that AiolosN159S causes some immunodeficient phenotypes via the pathogenesis referred to as the heterodimeric interference as observed for AiolosG158R variant

    An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors.

    Get PDF
    To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers

    The axial anomaly and the phases of dense QCD

    Full text link
    The QCD axial anomaly, by coupling the chiral condensate and BCS pairing fields of quarks in dense matter, leads to a new critical point in the QCD phase diagram \cite{HTYB,chiral2}, which at sufficiently low temperature should terminate the line of phase transitions between chirally broken hadronic matter and color superconducting quark matter. The critical point indicates that matter at low temperature should cross over smoothly from the hadronic to the quark phase, as suggested earlier on the basis of symmetry. We review here the arguments, based on a general Ginzburg-Landau effective Lagrangian, for the existence of the new critical point, as well as discuss possible connections between the QCD phase structure and the BEC-BCS crossover in ultracold trapped atomic fermion systems at unitarity. and implications for the presence of quark matter in neutron stars.Comment: 8 pages, Proceedings of Quark Matter 2008, Jaipu

    A new proposal of tailored bioinstrumentation using rapid prototyping and three-dimensional CAD — First trial to develop individually designed cuff-units for continuous blood pressure measurement

    Get PDF
    The concept of tailored bioinstrumentation using rapid prototyping and three-dimensional CAD (3D-CAD) was proposed. This concept is to make individually designed and fabricated sensor unit to attach human body. Within the proposed concept, cuff-units for continuous blood pressure measurement were individually designed using 3D-CAD and fabricated automatically. As the result, blood pressure wave forms can be obtained using the finally developed cuff units. Using rapid prototyping device, the design and fabrication process were accelerated without any artisan-like high skilled persons
    • …
    corecore