20,820 research outputs found

    Jaynes-Cummings Models with trapped electrons on liquid Helium

    Full text link
    Jaynes-Cummings model is a typical model in quantum optics and has been realized with various physical systems (e.g, cavity QED, trapped ions, and circuit QED etc..) of two-level atoms interacting with quantized bosonic fields. Here, we propose a new implementation of this model by using a single classical laser beam to drive an electron floating on liquid Helium. Two lowest levels of the {\it vertical} motion of the electron acts as a two-level "atom", and the quantized vibration of the electron along one of the {\it parallel} directions, e.g., xx-direction, serves the bosonic mode. These two degrees of freedom of the trapped electron can be coupled together by using a classical laser field. If the frequencies of the applied laser fields are properly set, the desirable Jaynes-Cummings models could be effectively realized.Comment: 9 pages, 2 figure

    Generic Object Detection With Dense Neural Patterns and Regionlets

    Full text link
    This paper addresses the challenge of establishing a bridge between deep convolutional neural networks and conventional object detection frameworks for accurate and efficient generic object detection. We introduce Dense Neural Patterns, short for DNPs, which are dense local features derived from discriminatively trained deep convolutional neural networks. DNPs can be easily plugged into conventional detection frameworks in the same way as other dense local features(like HOG or LBP). The effectiveness of the proposed approach is demonstrated with the Regionlets object detection framework. It achieved 46.1% mean average precision on the PASCAL VOC 2007 dataset, and 44.1% on the PASCAL VOC 2010 dataset, which dramatically improves the original Regionlets approach without DNPs

    Adiabatic passage of collective excitations in atomic ensembles

    Full text link
    We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.Comment: 7 pages, 2 figure

    Dual Actions for Born-Infeld and Dp-Brane Theories

    Full text link
    Dual actions with respect to U(1) gauge fields for Born-Infeld and DpDp-brane theories are reexamined. Taking into account an additional condition, i.e. a corollary to the field equation of the auxiliary metric, one obtains an alternative dual action that does not involve the infinite power series in the auxiliary metric given by ref. \cite{s14}, but just picks out the first term from the series formally. New effective interactions of the theories are revealed. That is, the new dual action gives rise to an effective interaction in terms of one interaction term rather than infinite terms of different (higher) orders of interactions physically. However, the price paid for eliminating the infinite power series is that the new action is not quadratic but highly nonlinear in the Hodge dual of a (p1)(p-1)-form field strength. This non-linearity is inevitable to the requirement the two dual actions are equivalent.Comment: v1: 11 pages, no figures; v2: explanation of effective interactions added; v3: concision made; v4: minor modification mad

    Negative spin Hall magnetoresistance in antiferromagnetic Cr2O3/Ta bilayer at low temperature region

    Full text link
    We investigate the observation of negative spin Hall magnetoresistance (SMR) in antiferromagnetic Cr2O3/Ta bilayers at low temperature. The sign of the SMR signals is changed from positive to negative monotonously from 300 K to 50 K. The change of the signs for SMR is related with the competitions between the surface ferromagnetism and bulky antiferromagnetic of Cr2O3. The surface magnetizations of Cr2O3 (0001) is considered to be dominated at higher temperature, while the bulky antiferromagnetics gets to be robust with decreasing of temperature. The slopes of the abnormal Hall curves coincide with the signs of SMR, confirming variational interface magnetism of Cr2O3 at different temperature. From the observed SMR ratio under 3 T, the spin mixing conductance at Cr2O3/Ta interface is estimated to be 1.12*10^14 (ohm^-1*m^-2), which is comparable to that of YIG/Pt structures and our early results of Cr2O3/W. (Appl. Phys. Lett. 110, 262401 (2017)

    On a Localized Riemannian Penrose Inequality

    Full text link
    Consider a compact, orientable, three dimensional Riemannian manifold with boundary with nonnegative scalar curvature. Suppose its boundary is the disjoint union of two pieces: the horizon boundary and the outer boundary, where the horizon boundary consists of the unique closed minimal surfaces in the manifold and the outer boundary is metrically a round sphere. We obtain an inequality relating the area of the horizon boundary to the area and the total mean curvature of the outer boundary. Such a manifold may be thought as a region, surrounding the outermost apparent horizons of black holes, in a time-symmetric slice of a space-time in the context of general relativity. The inequality we establish has close ties with the Riemannian Penrose Inequality, proved by Huisken and Ilmanen, and by Bray.Comment: 16 page

    Modeling the AgInSbTe Memristor

    Get PDF
    The AgInSbTe memristor shows gradual resistance tuning characteristics, which makes it a potential candidate to emulate biological plastic synapses. The working mechanism of the device is complex, and both intrinsic charge-trapping mechanism and extrinsic electrochemical metallization effect are confirmed in the AgInSbTe memristor. Mathematical model of the AgInSbTe memristor has not been given before. We propose the flux-voltage controlled memristor model. With piecewise linear approximation technique, we deliver the flux-voltage controlled memristor model of the AgInSbTe memristor based on the experiment data. Our model fits the data well. The flux-voltage controlled memristor model and the piecewise linear approximation method are also suitable for modeling other kinds of memristor devices based on experiment data

    Self-Assembly of Nanocomponents into Composite Structures: Derivation and Simulation of Langevin Equations

    Full text link
    The kinetics of the self-assembly of nanocomponents into a virus, nanocapsule, or other composite structure is analyzed via a multiscale approach. The objective is to achieve predictability and to preserve key atomic-scale features that underlie the formation and stability of the composite structures. We start with an all-atom description, the Liouville equation, and the order parameters characterizing nanoscale features of the system. An equation of Smoluchowski type for the stochastic dynamics of the order parameters is derived from the Liouville equation via a multiscale perturbation technique. The self-assembly of composite structures from nanocomponents with internal atomic structure is analyzed and growth rates are derived. Applications include the assembly of a viral capsid from capsomers, a ribosome from its major subunits, and composite materials from fibers and nanoparticles. Our approach overcomes errors in other coarse-graining methods which neglect the influence of the nanoscale configuration on the atomistic fluctuations. We account for the effect of order parameters on the statistics of the atomistic fluctuations which contribute to the entropic and average forces driving order parameter evolution. This approach enables an efficient algorithm for computer simulation of self-assembly, whereas other methods severely limit the timestep due to the separation of diffusional and complexing characteristic times. Given that our approach does not require recalibration with each new application, it provides a way to estimate assembly rates and thereby facilitate the discovery of self-assembly pathways and kinetic dead-end structures.Comment: 34 pages, 11 figure
    corecore