5,996 research outputs found
Estimating the efficient price from the order flow: a Brownian Cox process approach
At the ultra high frequency level, the notion of price of an asset is very
ambiguous. Indeed, many different prices can be defined (last traded price,
best bid price, mid price,...). Thus, in practice, market participants face the
problem of choosing a price when implementing their strategies. In this work,
we propose a notion of efficient price which seems relevant in practice.
Furthermore, we provide a statistical methodology enabling to estimate this
price form the order flow
Hybrid meson masses and the correlated Gaussian basis
We revisited a model for charmonium hybrid meson with a magnetic gluon [Yu.
S. Kalashnikova and A. V. Nefediev, Phys. Rev. D {\bf 77}, 054025 (2008)] and
improved the numerical calculations. These improvements support the hybrid
meson interpretation of X(4260). Within the same model, we computed the hybrid
meson mass with an electric gluon which is resolved to be lighter. Relativistic
effects and coupling channels decreased also the mass.Comment: 9 pages, 20 figures ; accepted for publication in Phys. Rev.
The nanoscale phase separation in hole-doped manganites
A macroscopic phase separation, in which ferromagnetic clusters are observed
in an insulating matrix, is sometimes observed, and believed to be essential to
the colossal magnetoresistive (CMR) properties of manganese oxides. The
application of a magnetic field may indeed trigger large magnetoresistance
effects due to the percolation between clusters allowing the movement of the
charge carriers. However, this macroscopic phase separation is mainly related
to extrinsic defects or impurities, which hinder the long-ranged charge-orbital
order of the system. We show in the present article that rather than the
macroscopic phase separation, an homogeneous short-ranged charge-orbital order
accompanied by a spin glass state occurs, as an intrinsic result of the
uniformity of the random potential perturbation induced by the solid solution
of the cations on the -sites of the structure of these materials. Hence the
phase separation does occur, but in a more subtle and interesting nanoscopic
form, here referred as ``homogeneous''. Remarkably, this ``nanoscale phase
separation'' alone is able to bring forth the colossal magnetoresistance in the
perovskite manganites, and is potentially relevant to a wide variety of other
magnetic and/or electrical properties of manganites, as well as many other
transition metal oxides, in bulk or thin film form as we exemplify throughout
the article.Comment: jpsj2 TeX style (J. Phys. Soc. Jpn); 18 pages, 7 figure
Coexistence of long-ranged charge and orbital order and spin-glass state in single-layered manganites with weak quenched disorder
The relationship between orbital and spin degrees of freedom in the
single-crystals of the hole-doped PrCaMnO, 0.3
0.7, has been investigated by means of ac-magnetometry and charge
transport. Even though there is no cation ordering on the -site, the
quenched disorder is extremely weak in this system due to the very similar
ionic size of Pr and Ca. A clear asymmetric response of the
system to the under- (respective over-) hole doping was observed. The
long-ranged charge-orbital order established for half doping (=0.5) subsists
in the over-doping case ( 0.5), albeit rearranged to accommodate the
extra holes introduced in the structure. The charge-orbital order is however
destabilized by the presence of extra localized electrons (under-doping,
0.5), leading to its disappearance below =0.35. We show that in an
intermediate under-doped region, with 0.35 0.5, the
``orbital-master spin-slave'' relationship commonly observed in half-doped
manganites does not take place. The long-ranged charge-orbital order is not
accompanied by an antiferromagnetic transition at low temperatures, but by a
frustrated short-ranged magnetic state bringing forth a spin-glass phase. We
discuss in detail the nature and origin of this spin-glass state, which, as in
the half-doped manganites with large quenched disorder, is not related to the
macroscopic phase separation observed in crystals with minor defects or
impurities.Comment: EPL style; 6 pages, 5 figure
Bandwidth-disorder phase diagram of half doped layered manganites
Phase diagrams in the plane of (the average ionic radius, related to
one-electron bandwidth ) and (the ionic radius variance,
measuring the quenched disorder), or ``bandwidth-disorder phase diagrams'',
have been established for perovskite manganites, with three-dimensional (3)
Mn-O network. Here we establish the intrinsic bandwidth-disorder phase diagram
of half-doped layered manganites with the two-dimensional (2) Mn-O network,
examining in detail the ``mother state'' of the colossal magnetoresistance
(CMR) phenomenon in crystals without ferromagnetic instability. The
consequences of the reduced dimensionality, from 3 to 2, on the
order-disorder phenomena in the charge-orbital sectors are also highlighted.Comment: REVTeX 4 style; 5 pages, 4 figure
Why pinning by surface irregularities can explain the peak effect in transport properties and neutron diffraction results in NbSe2 and Bi-2212 crystals?
The existence of a peak effect in transport properties (a maximum of the
critical current as function of magnetic field) is a well-known but still
intriguing feature of type II superconductors such as NbSe2 and Bi-2212. Using
a model of pinning by surface irregularities in anisotropic superconductors, we
have developed a calculation of the critical current which allows estimating
quantitatively the critical current in both the high critical current phase and
in the low critical current phase. The only adjustable parameter of this model
is the angle of the vortices at the surface. The agreement between the
measurements and the model is really very impressive. In this framework, the
anomalous dynamical properties close to the peak effect is due to co-existence
of two different vortex states with different critical currents. Recent neutron
diffraction data in NbSe2 crystals in presence of transport current support
this point of view
The few-body problem in terms of correlated gaussians
In their textbook, Suzuki and Varga [Y. Suzuki and K. Varga, {\em Stochastic
Variational Approach to Quantum-Mechanical Few-Body Problems} (Springer,
Berlin, 1998)] present the stochastic variational method in a very exhaustive
way. In this framework, the so-called correlated gaussian bases are often
employed. General formulae for the matrix elements of various operators can be
found in the textbook. However the Fourier transform of correlated gaussians
and their application to the management of a relativistic kinetic energy
operator are missing and cannot be found in the literature. In this paper we
present these interesting formulae. We give also a derivation for new
formulations concerning central potentials; the corresponding formulae are more
efficient numerically than those presented in the textbook.Comment: 10 page
Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)
We present energy filtered electron emission spectromicroscopy with spatial
and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown
by furnace annealing. Low energy electron microscopy shows that more than 80%
of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides
an independent measurement of the graphene thickness distribution map. The work
function, measured by photoelectron emission microscopy (PEEM), varies across
the surface from 4.34 to 4.50eV according to both the graphene thickness and
the graphene-SiC interface chemical state. At least two SiC surface chemical
states (i.e., two different SiC surface structures) are present at the
graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface.
K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale
regions show that the Dirac point shifts as a function of graphene thickness.
Novel Bragg diffraction of the Dirac cones via the superlattice formed by the
commensurately rotated graphene sheets is observed. The experiments underline
the importance of lateral and spectroscopic resolution on the scale of future
electronic devices in order to precisely characterize the transport properties
and band alignments
- …
