1,447 research outputs found

    Three-dimensional orbits of metal-poor halo stars and the formation of the Galaxy

    Get PDF
    We present the three-dimensional orbital motions of metal-poor stars in conjunction with their metal abundances, for the purpose of getting insight into the formation process of the Galaxy. Our sample stars, which include metal-deficient red giants and RR Lyrae variables observed by the Hipparcos satellite, are least affected by known systematics, stemmed from kinematic bias, metallicity calibration, and secondary metal contamination of stellar surface. We find, for the stars in the metallicity range of [Fe/H]<-1, that there is no evidence for the correlation between [Fe/H] and their orbital eccentricities e. Even for [Fe/H]<-1.6, about 16% of the stars have e less than 0.4. We show that the e distribution of orbits for [Fe/H]<-1.6 is independent of the height |z| away from the Galactic plane, whereas for [Fe/H]>-1.6 the stars at |z|>1 kpc are systematically devoid of low-e orbits with e<0.6. This indicates that low-e stars with [Fe/H]<-1.6 belong to the halo component, whereas the rapidly-rotating thick disk with a scale height about 1 kpc has a metal-weak tail in the range of -1.6<[Fe/H]<-1. The fraction of this metal-weak thick disk appears to be only less than 20%. The significance of these results for the early evolution of the Galaxy is briefly discussed.Comment: 11 pages, 3 figures, AASTeX, to appear in ApJ Letter

    The evolution of signal form: Effects of learned versus inherited recognition

    Get PDF
    Organisms can learn by individual experience to recognize relevant stimuli in the environment or they can genetically inherit this ability from their parents. Here, we ask how these two modes of acquisition affect signal evolution, focusing in particular on the exaggeration and cost of signals. We argue first, that faster learning by individual receivers cannot be a driving force for the evolution of exaggerated and costly signals unless signal senders are related or the same receiver and sender meet repeatedly. We argue instead that biases in receivers’ recognition mechanisms can promote the evolution of costly exaggeration in signals. We provide support for this hypothesis by simulating coevolution between senders and receivers, using artificial neural networks as a model of receivers’ recognition mechanisms. We analyse the joint effects of receiver biases, signal cost and mode of acquisition, investigating the circumstances under which learned recognition gives rise to more exaggerated signals than inherited recognition. We conclude the paper by discussing the relevance of our results to a number of biological scenarios

    Convergence of the Allen-Cahn equation with Neumann boundary conditions

    Get PDF
    We study a singular limit problem of the Allen-Cahn equation with Neumann boundary conditions and general initial data of uniformly bounded energy. We prove that the time-parametrized family of limit energy measures is Brakke's mean curvature flow with a generalized right angle condition on the boundary.Comment: 26 pages, 1 figur

    X-ray Anomalous Scattering of Diluted Magnetic Oxide Semiconductors: Possible Evidence of Lattice Deformation for High Temperature Ferromagnetism

    Full text link
    We have examined whether the Co ions crystallographically substitute on the Ti sites in rutile and anatase Ti_{1-x}CoCo_{x}OO_{2-delta}thinfilmsthatexhibitroomtemperatureferromagnetism.IntensitiesofthexrayBraggreflectionfromthefilmsweremeasuredaroundthe thin films that exhibit room-temperature ferromagnetism. Intensities of the x-ray Bragg reflection from the films were measured around the KabsorptionedgeofCo.IftheCoionsrandomlysubstituteontheTisites,theintensityshouldexhibitananomalyduetotheanomalousdispersionoftheatomicscatteringfactorofCo.However,noneoftheanataseandrutilesamplesdidexhibitananomaly,unambiguouslyshowingthattheCoionsinTi-absorption-edge of Co. If the Co ions randomly substitute on the Ti sites, the intensity should exhibit an anomaly due to the anomalous dispersion of the atomic scattering factor of Co. However, none of the anatase and rutile samples did exhibit an anomaly, unambiguously showing that the Co ions in Ti_{1-x}CoCo_{x}OO_{2-delta}arenotexactlylocatedattheTisitesofTiO are not exactly located at the Ti sites of TiO_2.TheabsenceoftheanomalyisprobablycausedbyasignificantdeformationofthelocalstructurearoundCoduetotheoxygenvacancy.WehaveappliedthesamemethodtoparamagneticZn. The absence of the anomaly is probably caused by a significant deformation of the local structure around Co due to the oxygen vacancy. We have applied the same method to paramagnetic Zn_{1-x}CoCo_{x}$O thin films and obtained direct evidence that the Co ions are indeed substituted on the Zn sites.Comment: 5 pages, 4 figures, accepted in PR

    d-like Symmetry of the Order Parameter and Intrinsic Josephson Effects in Bi2212 Cross-Whisker Junctions

    Full text link
    An intrinsic tunnel junction was made using two Bi-2212 single crystal whiskers. The two whiskers with a cross-angle were overlaid at their c-planes and connected by annealing. The angular dependence of the critical current density along the c-axis is of the d-wave symmetry. However, the angular dependence is much stronger than that of the conventional d-wave. Furthermore, the current vs. voltage characteristics of the cross-whiskers junctions show a multiple-branch structure at any cross-angle, indicating the formation of the intrinsic Josephson junction array.Comment: 4 pages PDF fil

    Theory of tunneling spectroscopy in superconducting Sr2RuO4

    Full text link
    A theory for tunneling spectroscopy in normal metal /insulator/triplet superconductor junction is presented. We assume two kinds of non-unitary triplet superconducting states which are the most promising states for Sr2_{2}RuO4_{4}. The calculated conductance spectra showzero-bias peaks as well as gap structures. The existences of residual components in the spectra reflect the non-unitary properties of superconducting states.Comment: 5pages, 4figures(included), to be published in Phys.Rev.B 56, (1997

    Spiral magnetic structure in spin-5/2 frustrated trimerized chains in SrMn3P4O14

    Full text link
    We study a spin-5/2 antiferromagnetic trimerized chain substance SrMn3P4O14 using neutron powder diffraction experiments. The coplanar spiral magnetic structure appears below T_N1 = 2.2(1) K. Values of several magnetic structure parameters change rapidly at T_N2 = 1.75(5) K, indicating another phase transition, although the magnetic structures above and below T_N2 are the qualitatively same. The spiral magnetic structure can be explained by frustration between nearest-neighbor and next-nearest-neighbor exchange interactions in the trimerized chains.Comment: submitted to Phys. Rev.

    A Cross-Whiskers Junction as a Novel Fabrication Process for Intrinsic Josephson Junction

    Full text link
    A Bi2Sr2CaCu2O8+d cross-whiskers junction has been successfully discovered as a novel intrinsic Josephson junction without using any technique for micro-fabrication. Two Bi2Sr2CaCu2O8+d whisker crystals were placed crosswise on a MgO substrate and heated at 850C for 30 min. They were electrically connected at their c-planes. The measurement terminals were made at the four ends of the whiskers. The I-V characteristics of the cross-whiskers junction at 5K were found to show a clear multiple-branch structure with a spacing of approximately 15 mV that is a feature of the intrinsic Josephson junction. The critical current density Jc was estimated to be 1170 A/cm2. The branch-structure was strongly suppressed by the magnetic field above 1kOe.Comment: 4 pages, PDF fil

    Successive phase transitions and phase diagrams of the quasi-two-dimensional triangular antiferromagnet Rb4Mn(MoO4)3

    Full text link
    Comprehensive experimental studies by magnetic, thermal and neutron measurements have clarified that Rb4Mn(MoO4)3 is a model system of a quasi-2D triangular Heisenberg antiferromagnet with an easy-axis anisotropy, exhibiting successive transitions across an intermediate collinear phase. As a rare case for geometrically frustrated magnetism, quantitative agreement between experiment and theory is found for complete, anisotropic phase diagrams as well as magnetic properties.Comment: 4 pages, 5 figure
    corecore