592 research outputs found

    Kinetic equations for Stark line shapes

    Full text link
    The BBGKY formalism is revisited in the framework of plasma spectroscopy. We address the issue of Stark line shape modeling by using kinetic transport equations. In the most simplified treatment of these equations, triple correlations between an emitter and the perturbing charged particles are neglected and a collisional description of Stark effect is obtained. Here we relax this assumption and retain triple correlations using a generalization of the Kirkwood truncature hypothesis to quantum operator. An application to hydrogen lines is done in the context of plasma diagnostic, and indicates that the neglect of triple correlations can lead to a significant overestimate of the line width.Comment: 13 pages, 1 figur

    3D structure and dynamics of filaments in turbulence simulations of WEST diverted plasmas

    Get PDF
    International audienceWe study the effect of a diverted magnetic geometry on edge plasma turbulence, focusing on the three-dimensional structure and dynamics of filaments, also called blobs, in simulations of the WEST tokamak, featuring a primary and secondary X-point. For this purpose, in addition to classical analysis techniques, we apply here a novel fully 3D Blob Recognition And Tracking (BRAT) algorithm, allowing for the first time to resolve the three-dimensional structure and dynamics of the blobs in a turbulent 3D plasma featuring a realistic magnetic geometry. The results are tested against existing theoretical scalings of blob velocity [Myra et al, Physics of Plasmas 2006]. The complementary analysis of the 3D structure of the filaments shows how they disconnect from the divertor plate in the vicinity of the X-points, leading to a transition from a sheath-connected regime to the ideal-interchange one. Furthermore, the numerical results show non-negligible effects of the turbulent background plasma: approximately half of the detected filaments are involved in mutual interactions, eventually resulting in negative radial velocities, and a fraction of the filaments is generated by turbulence directly below the X-point

    Implementation of drift velocities and currents in SOLEDGE2D-EIRENE

    Get PDF
    International audienceIn order to improve cross-field transport description, drifts and currents have been implemented in SOLEDGE2D-EIRENE. The derivation of an equation for the electric potential is recalled. The resolution of current equation is tested in a simple slab case. WEST divertor simulations in forward-B and reverse-B fields are also discussed. A significant increase of ExB shear is observed in the forward-B configuration that could explain a favorable L-H transition in this case

    Soledge2D‐Eirene simulations of the Pilot‐PSI linear plasma device compared to experimental data

    Get PDF
    Predictions for the operation of tokamak divertors are reliant on edge plasma simulations typically utilizing a fluid plasma code in combination with a Monte Carlo code for neutral species. Pilot‐PSI is a linear device operating with a cascaded arc plasma source that produces plasmas comparable to those expected in the ITER divertor (Te ∌ 1 eV, ne ∌ 1021&nbsp;m−3). In this study, plasma discharges in Pilot‐PSI are modelled using the Soledge2D fluid plasma code coupled to the Eirene neutral Monte Carlo code. The plasma is generated using an external source of plasma density and power. These input parameters are tuned in order to match Thomson scattering (TS) measurements close to the cascaded arc source nozzle. The sensitivity of the simulations to different atomic physics models is explored. It is found that elastic collisions between ions and hydrogen molecules have a strong influence on calculated profiles. Without their inclusion, supersonic flow regimes are obtained with M ∌ 2 close to the target plate. Simulation results are compared with experimental findings using TS close to the target and, in the case of Pilot‐PSI, a Langmuir probe embedded in the target. Comparison between experimental trends observed in a background pressure scan and the simulations show that the inclusion of the elastic collision is mandatory for the trends to be reproduced.</p

    Spectral Line Shapes as a Diagnostic Tool in Magnetic Fusion

    Get PDF
    Spectral line shapes and intensities are used for obtaining information on the various regions of magnetic fusion devices. Emission from low principal quantum numbers of hydrogen isotopes is analyzed for understanding the complex recycling mechanism. Lines emitted from high principal quantum numbers of hydrogen and helium are dominated by Stark effect, allowing an electronic density diagnostic in the divertor. Intensities of lines emitted by impurities are fitted for a better knowledge of ion transport in the confined plasma
    • 

    corecore