36,960 research outputs found
Valley Dependent Optoelectronics from Inversion Symmetry Breaking
Inversion symmetry breaking allows contrasted circular dichroism in different
k-space regions, which takes the extreme form of optical selection rules for
interband transitions at high symmetry points. In materials where band-edges
occur at noncentral valleys, this enables valley dependent interplay of
electrons with light of different circular polarizations, in analogy to spin
dependent optical activities in semiconductors. This discovery is in perfect
harmony with the previous finding of valley contrasted Bloch band features of
orbital magnetic moment and Berry curvatures from inversion symmetry breaking
[Phys. Rev. Lett. 99, 236809 (2007)]. A universal connection is revealed
between the k-resolved optical oscillator strength of interband transitions,
the orbital magnetic moment and the Berry curvatures, which also provides a
principle for optical measurement of orbital magnetization and intrinsic
anomalous Hall conductivity in ferromagnetic systems. The general physics is
demonstrated in graphene where inversion symmetry breaking leads to valley
contrasted optical selection rule for interband transitions. We discuss
graphene based valley optoelectronics applications where light polarization
information can be interconverted with electronic information.Comment: Expanded version, to appear in Phys. Rev.
The effect of Mach number on unstable disturbances in shock/boundary-layer interactions
The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
Evaluating energy security of resource-poor economies: A modified principle component analysis approach
© 2016 Elsevier B.V. This study proposes to aggregately measure energy security performance with the principal component analysis. In its application of the methodology to four resource-poor yet economically advanced island economies in East Asia—Singapore, South Korea, Japan, and Taiwan, this study establishes a novel framework to conceptualize energy security. The framework incorporates three dimensions: vulnerability, efficiency, and sustainability, three indicators being allocated to each dimension. The study finds that all the three dimensions are critical for the resource-poor economies but have different weights in each of them. An urgent task for these four economies is to implement energy efficiency and conservation measures. Liberalization of electricity sector can be a helpful tool to reduce energy consumption and increase efficiency. All of them have been committed to promoting renewable energy development, which shall be further expanded in these economies
- …