44,811 research outputs found
The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-Ray Burst Pulses
In this paper we have analyzed the temporal and spectral behavior of 52 Fast
Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts
(GRBs) observed by the CGRO/BATSE, using a pulse model with two shape
parameters and the Band model with three shape parameters, respectively. It is
found that these FRED pulses are distinguished both temporally and spectrally
from those in long-lag pulses. Different from these long-lag pulses only one
parameter pair indicates an evident correlation among the five parameters,
which suggests that at least 4 parameters are needed to model burst
temporal and spectral behavior. In addition, our studies reveal that these FRED
pulses have correlated properties: (i) long-duration pulses have harder spectra
and are less luminous than short-duration pulses; (ii) the more asymmetric the
pulses are the steeper the evolutionary curves of the peak energy () in
the spectrum within pulse decay phase are. Our statistical
results give some constrains on the current GRB models.Comment: 18 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Recommended from our members
A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss
Dimeric porphyrin molecules have great potential as donor materials for high performance bulk heterojunction organic solar cells (OSCs). Recently reported dimeric porphyrins bridged by ethynylenes showed power conversion efficiencies (PCEs) of more than 8%. In this study, we design and synthesize a new conjugated dimeric D-A porphyrin ZnP2BT-RH, in which the two porphyrin units are linked by an electron accepting benzothiadiazole (BT) unit. The introduction of the BT unit enhances the electron delocalization, resulting in a lower highest occupied molecular orbital (HOMO) energy level and an increased molar extinction coefficient in the near-infrared (NIR) region. The bulk heterojunction solar cells with ZnP2BT-RH as the donor material exhibit a high PCE of up to 10% with a low energy loss (Eloss) of only 0.56 eV. The 10% PCE is the highest for porphyrin-based OSCs with a conventional structure, and this Eloss is also the smallest among those reported for small molecule-based OSCs with a PCE higher than 10% to date
Graphitic-BN Based Metal-free Molecular Magnets From A First Principle Study
We perform a first principle calculation on the electronic properties of
carbon doped graphitic boron nitride graphitic BN. It was found that carbon
substitution for either boron or nitrogen atom in graphitic BN can induce
spontaneous magnetization. Calculations based on density functional theory with
the local spin density approximation on the electronic band structure revealed
a spin polarized, dispersionless band near the Fermi energy. Spin density
contours showed that the magnetization density originates from the carbon atom.
The magnetization can be attributed to the carbon 2p electron. Charge density
distribution shows that the carbon atom forms covalent bonds with its three
nearest neighbourhood. The spontaneous magnetization survives the curvature
effect in BN nanotubes, suggesting the possibility of molecular magnets made
from BN. Compared to other theoretical models of light-element or metal-free
magnetic materials, the carbon-doped BN are more experimentally accessible and
can be potentially useful.Comment: 8 pages, 4 figure
- …