14 research outputs found

    T-cell subpopulations αβ and γδ in cord blood of very preterm infants : The influence of intrauterine infection

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPreterm infants are very susceptible to infections. Immune response mechanisms in this group of patients and factors that influence cord blood mononuclear cell populations remain poorly understood and are considered insufficient. However, competent immune functions of the cord blood mononuclear cells are also described. The aim of this work was to evaluate the T-cell population (CD3+) with its subpopulations bearing T-cell receptor (TCR) αβ or TCR γδ in the cord blood of preterm infants born before 32 weeks of gestation by mothers with or without an intrauterine infection. Being a pilot study, it also aimed at feasibility check and assessment of an expected effect size. The cord blood samples of 46 infants age were subjected to direct immunofluorescent staining with monoclonal antibodies and then analyzed by flow cytometry. The percentage of CD3+ cells in neonates born by mothers with diagnosis of intrauterine infection was significantly lower than in neonates born by mothers without infection (p = 0.005; Mann-Whitney U test). The number of cells did not differ between groups. Infection present in the mother did not have an influence on the TCR αβ or TCR γδ subpopulations. Our study contributes to a better understanding of preterm infants' immune mechanisms, and sets the stage for further investigations.Peer reviewedFinal Published versio

    cDNA Sequence and Fab Crystal Structure of HL4E10, a Hamster IgG Lambda Light Chain Antibody Stimulatory for γδ T Cells

    Get PDF
    Hamsters are widely used to generate monoclonal antibodies against mouse, rat, and human antigens, but sequence and structural information for hamster immunoglobulins is sparse. To our knowledge, only three hamster IgG sequences have been published, all of which use kappa light chains, and no three-dimensional structure of a hamster antibody has been reported. We generated antibody HL4E10 as a probe to identify novel costimulatory molecules on the surface of γδ T cells which lack the traditional αβ T cell co-receptors CD4, CD8, and the costimulatory molecule CD28. HL4E10 binding to γδ T cell, surface-expressed, Junctional Adhesion Molecule-Like (JAML) protein leads to potent costimulation via activation of MAP kinase pathways and cytokine production, resulting in cell proliferation. The cDNA sequence of HL4E10 is the first example of a hamster lambda light chain and only the second known complete hamster heavy chain sequence. The crystal structure of the HL4E10 Fab at 2.95 Å resolution reveals a rigid combining site with pockets faceted by solvent-exposed tyrosine residues, which are structurally optimized for JAML binding. The characterization of HL4E10 thus comprises a valuable addition to the spartan database of hamster immunoglobulin genes and structures. As the HL4E10 antibody is uniquely costimulatory for γδ T cells, humanized versions thereof may be of clinical relevance in treating γδ T cell dysfunction-associated diseases, such as chronic non-healing wounds and cancer

    Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile

    No full text
    γδ T lymphocytes in the intestinal intraepithelial layer (γδ IELs) are thought to contribute to immune competence, but their actual function remains poorly understood. Here we used DNA microarrays to study the gene expression profile of γδ IELs in a Yersinia infection system to better define their roles. To validate this approach, mesenteric lymph node CD8(+) αβ T cells were similarly analyzed. The transcription profiles show that, whereas lymph node CD8(+) αβ T cells must be activated to become cytotoxic effectors, γδ IELs are constitutively activated and appear to use different signaling cascades. Our data suggest that γδ IELs may respond efficiently to a broad range of pathological situations irrespective of their diverse T cell antigen receptor repertoire. γδ IELs may modulate local immune responses and participate in intestinal lipid metabolism, cholesterol homeostasis, and physiology. This study provides a strong basis for further investigations of the roles of these cells as well as mucosal immune defense in general

    Heat Signaling and Stress Responses in Photosynthesis

    No full text

    γδ T cell receptor ligands and modes of antigen recognition.: Antigen recognition by gamma delta T cells

    No full text
    RevueInternational audienceT lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs
    corecore