487 research outputs found

    A search for cyclotron resonance features with INTEGRAL

    Full text link
    We present an INTEGRAL observation of the Cen-Crux region in order to search the electron cyclotron resonance scattering features from the X-ray binary pulsars. During the AO1 200ks observation, we clearly detected 4 bright X-ray binaries, 1 Seyfert Galaxy, and 4 new sources in the field of view. Especially from GX301-2, the cyclotron resonance feature is detected at about 37 keV, and width of 3--4 keV. In addition, the depth of the resonance feature strongly depends on the X-ray luminosity. This is the first detection of luminosity dependence of the resonance depth. The cyclotron resonance feature is marginally detected from 1E1145.1-6141. Cen X-3 was very dim during the observation and poor statistics disable us to detect the resonance features.These are first INTEGRAL results of searching for the cyclotron resonance feature.Comment: 4pages, 8figures, To be published in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munic

    A clear separation of foraging areas between two neighboring colonies of Adelie Penguins observed in a year of extensive sea ice cover

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions : [OB] Polar Biology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc

    Resonant Inelastic X-Ray Scattering at the K Edge of Ge

    Full text link
    We study the resonant inelastic x-ray scattering (RIXS) at the KK edge of Ge. We measure RIXS spectra with systematically varying momenta in the final state. The spectra are a measure of exciting an electron-hole pair. We find a single peak structure (except the elastic peak) as a function of photon energy, which is nearly independent of final-state momenta. We analyze the experimental data by means of the band structure calculation. The calculation reproduces well the experimental shape, clarifying the implication of the spectral shape.Comment: 17 pages,9 figures, Please also see our related paper: cond-mat/040500

    X-ray Temperature and Mass Measurements to the Virial Radius of Abell 1413 with Suzaku

    Full text link
    We present X-ray observations of the northern outskirts of the relaxed galaxy cluster A1413 with Suzaku, whose XIS instrument has the low intrinsic background needed to make measurements of these low surface brightness regions. We excise 15 point sources superimposed on the image above a flux of 1×10−141\times 10^{-14} \fluxunit (2--10keV) using XMM-Newton and Suzaku images of the cluster. We quantify all known systematic errors as part of our analysis, and show our statistical errors encompasses them for the most part. Our results extend previous measurements with Chandra and XMM-Newton, and show a significant temperature drop to about 3keV at the virial radius, r200r_{200}. Our entropy profile in the outer region (>0.5r200> 0.5 r_{200}) joins smoothly onto that of XMM-Newton, and shows a flatter slope compared with simple models, similar to a few other clusters observed at the virial radius. The integrated mass of the cluster at the virial radius is approximately 7.5×1014M⊙7.5\times10^{14}M_{\odot} and varies by about 30% depending on the particular method used to measure it.Comment: 32pages, 9 figures, accepted for publication in PAS

    Origin of Thermal and Non-Thermal Hard X-ray Emission from the Galactic Center

    Full text link
    We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A∗^\ast (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.Comment: to be published in PASJ, v.61, No.5, 200

    Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    Full text link
    Two ultraluminous X-ray sources (ULXs) in the nearby Sb galaxy NGC 1313, named X-1 and X-2, were observed with Suzaku on 2005 September 15. During the observation for a net exposure of 28~ks (but over a gross time span of 90~ks), both objects varied in intensity by about 50~%. The 0.4--10 keV X-ray luminosity of X-1 and X-2 was measured as 2.5×1040 erg s−12.5 \times 10^{40}~{\rm erg~s^{-1}} and 5.8×1039 erg s−15.8 \times 10^{39}~{\rm erg~s^{-1}}, respectively, with the former the highest ever reported for this ULX. The spectrum of X-1 can be explained by a sum of a strong and variable power-law component with a high energy cutoff, and a stable multicolor blackbody with an innermost disk temperature of ∼0.2\sim 0.2 keV. These results suggest that X-1 was in a ``very high'' state, where the disk emission is strongly Comptonized. The absorber within NGC 1313 toward X-1 is suggested to have a subsolar oxygen abundance. The spectrum of X-2 is best represented, in its fainter phase, by a multicolor blackbody model with the innermost disk temperature of 1.2--1.3 keV, and becomes flatter as the source becomes brighter. Hence X-2 is interpreted to be in a slim-disk state. These results suggest that the two ULXs have black hole masses of a few tens to a few hundreds solar masses.Comment: accepted for publication in PAS

    Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A

    Full text link
    Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were carried out. K-shell transition lines from highly ionized ions of various elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray continuum spectra were modeled in the 3.4--40 keV band, summed over the entire remnant, and were fitted with a simplest combination of the thermal bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits with this assumption indicate that the continuum emission is likely to be dominated by the non-thermal emission with a cut-off energy at > 1 keV. The thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV band were made. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also shifted at the western part with the 1-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009

    Is the black hole in GX 339-4 really spinning rapidly?

    Full text link
    The wide-band Suzaku spectra of the black hole binary GX 339-4, acquired in 2007 February during the Very High state, were reanalyzed. Effects of event pileup (significant within ~ 3' of the image center) and telemetry saturation of the XIS data were carefully considered. The source was detected up to ~ 300$ keV, with an unabsorbed 0.5--200 keV luminosity of ~3.8 10^{38} erg/s at 8 kpc. The spectrum can be approximated by a power-law of photon index 2.7, with a mild soft excess and a hard X-ray hump. When using the XIS data outside 2' of the image center, the Fe-K line appeared extremely broad, suggesting a high black hole spin as already reported by Miller et al. (2008) based on the Suzaku data and other CCD data. When the XIS data accumulation is further limited to >3' to avoid event pileup, the Fe-K profile becomes narrower, and there appears a marginally better solution that suggests the inner disk radius to be 5-14 times the gravitational radius (1-sigma), though a maximally spinning black hole is still allowed by the data at the 90% confidence level. Consistently, the optically-thick accretion disk is inferred to be truncated at a radius 5-32 times the gravitational radius. Thus, the Suzaku data allow an alternative explanation without invoking a rapidly spinning black hole. This inference is further supported by the disk radius measured previously in the High/Soft state.Comment: 5 pages, figures, Suzaku results on GX 339-4, accepted to APJL. Nov. 11, 2009, accepted to ApJ
    • …
    corecore