9,597 research outputs found

    Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

    Full text link
    We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes

    Increased apolipoprotein-B:A1 ratio predicts cardiometabolic risk in patients with juvenile onset SLE

    Get PDF
    Background: Cardiovascular disease is a leading cause of mortality in patients with juvenile-onset systemic lupus erythematosus (JSLE). Traditional factors for cardiovascular risk (CVR) prediction are less robust in younger patients. More reliable CVR biomarkers are needed for JSLE patient stratification and to identify therapeutic approaches to reduce cardiovascular morbidity and mortality in JSLE. Methods: Serum metabolomic analysis (including >200 lipoprotein measures) was performed on a discovery (n=31, median age 19) and validation (n=31, median age 19) cohort of JSLE patients. Data was analysed using cluster, receiver operating characteristic analysis and logistic regression. RNA-sequencing assessed gene expression in matched patient samples. Findings: Hierarchical clustering of lipoprotein measures identified and validated two unique JSLE groups. Group-1 had an atherogenic and Group-2 had an atheroprotective lipoprotien profile. Apolipoprotein(Apo)B:ApoA1 distinguished the two groups with high specificity (96.2%) and sensitivity (96.7%). JSLE patients with high ApoB:ApoA1 ratio had increased CD8+ T-cell frequencies and a CD8+ T-cell transcriptomic profile enriched in genes associated with atherogenic processes including interferon signaling. These metabolic and immune signatures overlapped statistically significantly with lipid biomarkers associated with sub-clinical atherosclerosis in adult SLE patients and with genes overexpressed in T-cells from human atherosclerotic plaque respectively. Finally, baseline ApoB:ApoA1 ratio correlated positively with SLE disease activity index (r=0.43, p=0.0009) and negatively with Lupus Low Disease Activity State (r=-0.43, p=0.0009) over 5-year follow-up. Interpretation: Multi-omic analysis identified high ApoB:ApoA1 as a potential biomarker of increased cardiometabolic risk and worse clinical outcomes in JSLE. ApoB:ApoA1 could help identify patients that require increased disease monitoring, lipid modification or lifestyle changes. Funding: Lupus UK, The Rosetrees Trust, British Heart Foundation, UCL & Birkbeck MRC Doctoral Training Programme and Versus Arthritis

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Bone marrow mesenchymal stem cells do not enhance intra-synovial tendon healing despite engraftment and homing to niches within the synovium

    Get PDF
    Intra-synovial tendon injuries display poor healing, which often results in reduced functionality and pain. A lack of effective therapeutic options has led to experimental approaches to augment natural tendon repair with autologous mesenchymal stem cells (MSCs) although the effects of the intra-synovial environment on the distribution, engraftment and functionality of implanted MSCs is not known. This study utilised a novel sheep model which, although in an anatomically different location, more accurately mimics the mechanical and synovial environment of the human rotator cuff, to determine the effects of intra-synovial implantation of MSCs

    Bestrophin1: A Gene that Causes Many Diseases

    Get PDF
    Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that lead to the gradual loss of vision in and around the macular area. There are no treatments for patients suffering from bestrophinopathies, and no measures can be taken to prevent visual deterioration in those who have inherited disease-causing mutations. Bestrophinopathies are caused by mutations in the Bestrophin1 gene (BEST1), a protein found exclusively in the retinal pigment epithelial (RPE) cells of the eye. Mutations in BEST1 affect the function of the RPE leading to the death of overlying retinal cells and subsequent vision loss. The pathogenic mechanisms arising from BEST1 mutations are still not fully understood, and it is not clear how mutations in BEST1 lead to diseases with distinct clinical features. This chapter discusses BEST1, the use of model systems to investigate the effects of mutations and the potential to investigate individual bestrophinopathies using induced pluripotent stem cells

    Control of substrate access to the active site in methane monooxygenase

    Get PDF
    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]β[subscript 2] interface of α[subscript 2]β[subscript 2]γ[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114

    A Self-Consistent Model for Positronium Formation from Helium Atoms

    Full text link
    The differential and total cross sections for electron capture by positrons from helium atoms are calculated using a first-order distorted wave theory satisfying the Coulomb boundary conditions. In this formalism a parametric potential is used to describe the electron screening in a consistent and realistic manner. The present procedure is self consistent because (i) it satisfies the correct boundary conditions and post-prior symmetry, and (ii) the potential and the electron binding energies appearing in the transition amplitude are consistent with the wave functions describing the collision system. The results are compared with the other theories and with the available experimental measurements. At the considered range of collision energies, the results agree reasonably well with recent experiments and theories. [Note: This paper will be published on volume 42 of the Brazilian Journal of Physics

    CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast

    Get PDF
    Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I

    Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

    Full text link
    Alkali-doped iron selenide is the latest member of high Tc superconductor family, and its peculiar characters have immediately attracted extensive attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2) thin films by molecular beam epitaxy and unambiguously demonstrated the existence of phase separation, which is currently under debate, in this material using scanning tunneling microscopy and spectroscopy. The stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while the insulating phase has a \surd5\times\surd5 vacancy order. The iron vacancies are shown always destructive to superconductivity in KFe2Se2. Our study on the subgap bound states induced by the iron vacancies further reveals a magnetically-related bipartite order in the superconducting phase. These findings not only solve the existing controversies in the atomic and electronic structures in KxFe2-ySe2, but also provide valuable information on understanding the superconductivity and its interplay with magnetism in iron-based superconductors

    Cutting errors in total knee replacement: Assessment by computer assisted surgery

    Get PDF
    The observed errors in the position of the implanted prosthesis can be due to a number of potential causes. One of these is the potential error during execution of the bone cuts. However, there is only minimal information on this in the current literature. The amount of cutting errors in 40 consecutive total knee replacements was reported. All the operations were done by the same surgeon. The amount of cutting error was measured by the use of computer navigation system. It was hypothesized that there was no difference in the amount of error between bone cut through the cutting slot (slotted cutting) and bone cut done on the surface of the cutting guide (open cutting). It was found that the average absolute cutting error was 1° in the coronal plane and 1.4° in the sagittal plane. Significantly more outlier (more than 3°) was observed in the errors in the sagittal plane (P = 0.014, chi square test). Open cutting resulted in less error in the sagittal plane of the tibial cut when compared with slotted cutting (P = 0.031, Mann-Whitney U Test). This was attributed by the use of a thicker saw blade with higher stiffness in the open cutting method. © 2008 Springer-Verlag.postprin
    corecore