384 research outputs found

    Phenomenological theory of a scalar electronic order: application to skutterudite PrFe4P12

    Full text link
    By phenomenological Landau analysis, it is shown that a scalar order parameter with the point-group symmetry Γ1g\Gamma_{1g} explains most properties associated with the phase transition in PrFe4_4P12_{12} at 6.5 K. The scalar-order model reproduces magnetic and elastic properties in PrFe4_4P12_{12} consistently such as (i) the anomaly of the magnetic susceptibility and elastic constant at the transition temperature, (ii) anisotropy of the magnetic susceptibility in the presence of uniaxial pressure, and (iii) the anomaly in the elastic constant in magnetic field. An Ehrenfest relation is derived which relates the anomaly of the magnetic susceptibility to that of the elastic constant at the transition.Comment: 16 pages, 9 figure

    Diurnal variation and size dependence of the hygroscopicity of organic aerosol at a forest site in Wakayama, Japan: their relationship to CCN concentrations

    Get PDF
    Formation of biogenic secondary organic aerosol (BSOA) and its subsequent evolution can modify the hygroscopicity of the organic aerosol component (OA) in the forest atmosphere, and affect the concentrations of cloud condensation nuclei (CCN) there. In this study, size-resolved aerosol hygroscopic growth at 85&thinsp;% relative humidity and size-resolved aerosol composition were measured using a hygroscopic tandem differential mobility analyzer and an aerosol mass spectrometer, respectively, at a forest site in Wakayama, Japan, in August and September 2015. The hygroscopicity parameter of OA (κorg) presented daily minima in the afternoon hours, and it also showed an increase with the increase in particle dry diameter. The magnitudes of the diurnal variations in κorg for particles with dry diameters of 100 and 300&thinsp;nm were on average 0.091 and 0.096, respectively, and the difference in κorg between particles with dry diameters of 100 and 300&thinsp;nm was on average 0.056. The relative contributions of the estimated fresh BSOA and regional OA to total OA could explain 40&thinsp;% of the observed diurnal variations and size dependence of κorg. The hygroscopicity parameter of fresh BSOA was estimated to range from 0.089 to 0.12 for particles with dry diameters from 100 to 300&thinsp;nm. Compared with the use of time- and size-resolved κorg, the use of time- and size-averaged κorg leads to under- and over-estimation of the fractional contribution of OA to CCN number concentrations in the range from −5.0&thinsp;% to 26&thinsp;%. This indicates that the diurnal variations and size dependence of κorg strongly affect the overall contribution of OA to CCN concentrations. The fractional contribution of fresh BSOA to CCN number concentrations could reach 0.28 during the period of intensive BSOA formation. The aging of the fresh BSOA, if it occurs, increases the estimated contribution of BSOA to CCN number concentrations by 52&thinsp;%–84&thinsp;%.</p

    Effect of Uniaxial Stress for Pressure-Induced Superconductor SrFe_2As_2

    Full text link
    We report that the pressure-temperature phase diagram of single-crystalline SrFe2_2As2_2 is easily affected by the hydrostaticity of a pressure-transmitting medium. For all of the three mediums we used, superconductivity with zero resistance appears, accompanied by the suppression of an antiferromagnetic (orthorhombic) phase, but the critical pressure PcP_c was found to depend on the type of medium. PcP_c was estimated to be 4.4 GPa under almost hydrostatic condition, but it decreased to 3.43.73.4-3.7 GPa with the use of the medium already solidified at room temperature. The uniaxial stress along the c-axis is suggested to aid in the suppression of the antiferromagnetic (orthorhombic) phase. The pressure effect of BaFe2_2As2_2 is also reported.Comment: 4 pages, 5 figures, to be published in J. Phys. Soc. Jpn. No.8 (2009

    Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment

    Get PDF
    We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.Comment: 10 pages, 9 figure
    corecore