29 research outputs found

    Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

    Full text link
    The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature

    Relative energetics and structural properties of zirconia using a self-consistent tight-binding model

    Full text link
    We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals. This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.Comment: to be published in Physical Review B (1 march 2000

    Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice

    Get PDF
    Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs) are important mediators of allergic asthma, yet the precise signals which render endogenous DCs “pro-asthmatic”, and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J), or resistant (C3H) to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC) allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23), whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs) to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness

    Targeting of alpha(v) integrin identifies a core molecular pathway that regulates fibrosis in several organs

    Get PDF
    Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not existed. We report that Pdgfrb-Cre inactivates genes in murine HSCs with high efficiency. We used this system to delete the αv integrin subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Depletion of the αv integrin subunit in HSCs protected mice from CCl(4)-induced hepatic fibrosis, whereas global loss of αvβ3, αvβ5 or αvβ6 or conditional loss of αvβ8 on HSCs did not. Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of αv integrins using this system was also protective in models of pulmonary and renal fibrosis. Critically, pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated both liver and lung fibrosis, even when administered after fibrosis was established. These data identify a core pathway that regulates fibrosis, and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases

    Primary immunodeficiencies associated with eosinophilia

    Full text link

    Histamine and prostaglandin E(2) up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-γ-induced CXCL10 production by immature human dendritic cells

    No full text
    Effector memory T helper 2 (Th2) cells that accumulate in target organs (i.e. skin or bronchial mucosa) have a central role in the pathogenesis of allergic disorders. To date, the factors that selectively trigger local production of Th2-attracting chemokines remain poorly understood. In mucosa, at the sites of allergen entry, immature dendritic cells (DC) are in close contact with mast cells. Histamine and prostaglandin E(2) (PGE(2)) are two mediators released by allergen-activated mast cells that favour the polarization of maturing DC into Th2-polarizing cells. We analysed here the effects of histamine and PGE(2) on the prototypic, Th2-(CCL17, CCL22) versus Th1-(CXCL10) chemokine production by human DC. We report that histamine and PGE(2) dose-dependently up-regulate CCL17 and CCL22 by monocyte-derived immature DC. These effects were potentiated by tumour necrosis factor-α, still observed in the presence of the Th1-cytokine interferon-γ (IFN-γ) and abolished by the immunomodulatory cytokine interleukin-10. In addition, histamine and PGE(2) down-regulated IFN-γ-induced CXCL10 production by monocyte-derived DC. These properties of histamine and PGE(2) were observed at the transcriptional level and were mediated mainly through H2 receptors for histamine and through EP2 and EP4 receptors for PGE(2). Finally, histamine and PGE(2) also up-regulated CCL17 and CCL22 and decreased IFN-γ-induced CXCL10 production by purified human myeloid DC. In conclusion, these data show that, in addition to polarizing DC into mature cells that promote naïve T-cell differentiation into Th2 cells, histamine and PGE(2) may act on immature DC to trigger local Th2 cell recruitment through a selective control of Th1/Th2-attracting chemokine production, thereby contributing to maintain a microenvironment favourable to persistent immunoglobulin E synthesis
    corecore