90 research outputs found

    Right versus left radial artery access for coronary procedures: an international collaborative systematic review and meta-analysis including 5 randomized trials and 3210 patients

    Get PDF
    BACKGROUND: Radial artery access is a mainstay in the diagnosis and treatment of coronary artery disease. However, there is uncertainty on the comparison of right versus left radial access for coronary procedures. We thus undertook a systematic review and meta-analysis comparing right versus left radial access for coronary diagnostic and interventional procedures. METHODS: Pertinent studies were searched in CENTRAL, Google Scholar, MEDLINE/PubMed, and Scopus, together with international conference proceedings. Randomized trials comparing right versus left radial (or ulnar) access for coronary diagnostic or interventional procedures were included. Risk ratios (RR) and weighted mean differences (WMD) were computed to generate point estimates (95% confidence intervals). RESULTS: A total of 5 trials (3210 patients) were included. No overall significant differences were found comparing right versus left radial access in terms of procedural time (WMD=0.99 [-0.53; 2.51]min, p=0.20), contrast use (WMD=1.71 [-1.32; 4.74]mL, p=0.27), fluoroscopy time (WMD=-35.79 [-3.54; 75.12]s, p=0.07) or any major complication (RR=2.00 [0.75; 5.31], p=0.49). However, right radial access was fraught with a significantly higher risk of failure leading to cross-over to femoral access (RR=1.65 [1.18; 2.30], p=0.003) in comparison to left radial access. CONCLUSIONS: Right and left radial accesses appear largely similar in their overall procedural and clinical performance during transradial diagnostic or interventional procedures. Nonetheless, left radial access can be recommended especially during the learning curve phase to reduce femoral cross-overs

    Dramatic Repositioning of c-Myb to Different Promoters during the Cell Cycle Observed by Combining Cell Sorting with Chromatin Immunoprecipitation

    Get PDF
    The c-Myb transcription factor is a critical regulator of proliferation and stem cell differentiation, and mutated alleles of c-Myb are oncogenic, but little is known about changes in c-Myb activity during the cell cycle. To map the association of c-Myb with specific target genes during the cell cycle, we developed a novel Fix-Sort-ChIP approach, in which asynchronously growing cells were fixed with formaldehyde, stained with Hoechst 33342 and separated into different cell cycle fractions by flow sorting, then processed for chromatin immunoprecipitation (ChIP) assays. We found that c-Myb actively repositions, binding to some genes only in specific cell cycle phases. In addition, the specificity of c-Myb is dramatically different in small subpopulations of cells, for example cells in the G2/M phase of the cell cycle, than in the bulk population. The repositioning of c-Myb during the cell cycle is not due to changes in its expression and also occurs with ectopically expressed, epitope-tagged versions of c-Myb. The repositioning occurs in established cell lines, in primary human CD34+ hematopoietic progenitors and in primary human acute myeloid leukemia cells. The combination of fixation, sorting and ChIP analysis sheds new light on the dynamic nature of gene regulation during the cell cycle and provides a new type of tool for the analysis of gene regulation in small subsets of cells, such as cells in a specific phase of the cell cycle

    Transradial access for renal artery intervention

    Get PDF
    INTRODUCTION: Percutaneous interventional procedures in the renal arteries are usually performed using a femoral or brachial vascular access. The transradial approach is becoming more popular for peripheral interventions, but limited data exists for renal artery angioplasty and stenting. METHODS: We have analyzed the clinical, angiographic and technical results of renal artery stenting performed from radial artery access between 2012 and 2013. The radial artery anatomy was identified with aortography using 100 cm pig tail catheter. After engagement of the renal artery ostium with a 6F Multipurpose or 6F JR5 guiding catheter, the stenosis was passed with a 0.014" guidewire followed by angioplasty and stent implantation. RESULTS: In 27 patients (mean age: 65.4 +/- 9.17) with hemodynamically relevant renal artery stenosis (mean diameter stenosis: 77.7 +/- 10.6%; right, n = 7; left, n = 20), interventional treatment with angioplasty and stenting was performed using a left (n = 3) or right (n = 24) radial artery access. Direct stenting was successfully performed in 13 (48%) cases, and predilatations were required in ten cases 10 (37%). Primary technical success (residual stenosis <30%) could be achieved in all cases. The mean contrast consumption was 119 +/- 65 ml and the mean procedure time was 30 +/- 8.2 min. There were no major periprocedural vascular complications and in one patient transient creatinine level elevation was observed (3.7%). In one patient asymptomatic radial artery occlusion was detected (3.7%). CONCLUSION: Transradial renal artery angioplasty and stenting is technically feasible and safe procedure

    Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in

    Get PDF
    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement

    Modulation of the β-Catenin Signaling Pathway by the Dishevelled-Associated Protein Hipk1

    Get PDF
    BACKGROUND:Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl) is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY:We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS:These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene expression and cell movements that are essential for gastrulation
    corecore