32 research outputs found

    Cholangiocarcinoma: Epidemiology and risk factors

    Get PDF
    Cholangiocarcinoma (CCA) is a heterogeneous disease arising from a complex interaction between host-specific genetic background and multiple risk factors. Globally, CCA incidence rates exhibit geographical variation, with much higher incidence in parts of the Eastern world compared to the West. These differences are likely to reflect differences in geographical risk factors as well as genetic determinants. Of note, over the past few decades, the incidence rates of CCA appear to change and subtypes of CCA appear to show distinct epidemiological trends. These trends need to be interpreted with caution given the issues of diagnosis, recording and coding of subtypes of CCA. Epidemiological evidences suggest that in general population some risk factors are less frequent but associated with a higher CCA risk, while others are more common but associated with a lower risk. Moreover, while some risk factors are shared by intrahepatic and both extrahepatic forms, others seem more specific for one of the two forms. Currently some pathological conditions have been clearly associated with CCA development, and other conditions are emerging; however, while their impact in increasing CCA risk as single etiological factors has been provided in many studies, less is known when two or more risk factors co-occur in the same patient. Moreover, despite the advancements in the knowledge of CCA aetiology, in Western countries about 50% of cases are still diagnosed without any identifiable risk factor. It is therefore conceivable that other still undefined etiologic factors are responsible for the recent increase of CCA (especially iCCA) incidence worldwide

    Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding

    Get PDF
    For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 105 – 108 cells/cm3, and total volumes between 1×10−7 and 8×10−4 cm3. By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (108 – 109 cells/cm3). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering

    Quantitative and Fingerprint

    No full text

    Primary hepatocellular carcinoma associated with Wilson's disease in a young woman.

    No full text
    A 27 year old woman with hepato-lenticular degeneration (Wilson's disease) was found to have primary hepatocellular carcinoma (PHC) three and a half years after she was started on treatment with D-penicillamine. The tumour was resected since when she has remained well. Her liver function tests were normal throughout the course of her disease. The available literature is reviewed and possible mechanisms for this association proposed
    corecore