10,847 research outputs found

    Factor V Leiden and thrombosis in patients with systemic lupus erythematosus: a meta-analysis.

    Get PDF
    The aim of this study was to perform a meta-analysis of the association between the factor V Leiden polymorphism (FVL) and thrombosis among patients with systemic lupus erythematosus (SLE) and/or antiphospholipid antibody (aPL) positivity. Included studies recruited patients based on SLE or aPL-positive status, confirmed subjects' SLE diagnosis as defined by the American College of Rheumatology, and documented thrombotic events. Excluded studies were non-English or considered only arterial thrombosis. Individual patient data, available from 5 studies, together with unpublished data from 1210 European-American SLE patients from the UCSF Lupus Genetics Collection genotyped for FVL, were further analyzed. Seventeen studies (n=2090 subjects) were included in the initial meta-analysis. Unadjusted odds ratios (OR) were calculated to assess association of FVL with thrombosis. The OR for association of thrombosis with FVL was 2.88 (95% confidence interval (CI) 1.98-4.20). In the secondary analysis with our individual patient dataset (n=1447 European-derived individuals), SLE subjects with the FVL polymorphism still had more than two times the odds of thrombosis compared to subjects without this polymorphism, even when adjusting for covariates such as gender, age and aPL status. SLE and/or aPL-positive patients with the FVL variant have more than two times the odds of thrombosis compared to those without this polymorphism

    Subnanosecond Fluctuations in Low-Barrier Nanomagnets

    Full text link
    Fast magnetic fluctuations due to thermal torques have useful technological functionality ranging from cryptography to probabilistic computing. The characteristic time of fluctuations in typical uniaxial anisotropy magnets studied so far is bounded from below by the well-known energy relaxation mechanism. This time scales as α−1\alpha^{-1}, where α\alpha parameterizes the strength of dissipative processes. Here, we theoretically analyze the fluctuating dynamics in easy-plane and antiferromagnetically coupled nanomagnets. We find in such magnets, the dynamics are strongly influenced by fluctuating intrinsic fields, which give rise to an additional dephasing-type mechanism for washing out correlations. In particular, we establish two time scales for characterizing fluctuations (i) the average time for a nanomagnet to reverse|which for the experimentally relevant regime of low damping is governed primarily by dephasing and becomes independent of α\alpha, (ii) the time scale for memory loss of a single nanomagnet|which scales as α−1/3\alpha^{-1/3} and is governed by a combination of energy dissipation and dephasing mechanism. For typical experimentally accessible values of intrinsic fields, the resultant thermal-fluctuation rate is increased by multiple orders of magnitude when compared with the bound set solely by the energy relaxation mechanism in uniaxial magnets. This could lead to higher operating speeds of emerging devices exploiting magnetic fluctuations

    Redshift-space Distortions of the Power Spectrum of Cosmological Objects on a Light Cone : Explicit Formulations and Theoretical Implications

    Get PDF
    We examine the effects of the linear and the cosmological redshift-space distortions on the power spectrum of cosmological objects on a light cone. We develop theoretical formulae for the power spectrum in linear theory of density perturbations in a rigorous manner starting from first principle corresponding to Fourier analysis. Approximate formulae, which are useful properly to incorporate the redshift-space distortion effects into the power spectrum are derived, and the validity is examined. Applying our formulae to galaxy and quasar samples which roughly match the SDSS survey, we will show how the redshift-space distortions distort the power spectrum on the light cone quantitatively.Comment: 30 pages, Accepted for publication in the Astrophysical Journal Supplement Serie

    The Galaxy Cluster Luminosity-Temperature Relationship and Iron Abundances - A Measure of Formation History ?

    Get PDF
    Both the X-ray luminosity-temperature (L-T) relationship and the iron abundance distribution of galaxy clusters show intrinsic dispersion. Using a large set of galaxy clusters with measured iron abundances we find a correlation between abundance and the relative deviation of a cluster from the mean L-T relationship. We argue that these observations can be explained by taking into account the range of cluster formation epochs expected within a hierarchical universe. The known relationship of cooling flow mass deposition rate to luminosity and temperature is also consistent with this explanation. From the observed cluster population we estimate that the oldest clusters formed at z>~2. We propose that the iron abundance of a galaxy cluster can provide a parameterization of its age and dynamical history.Comment: 13 pages Latex, 2 figures, postscript. Accepted for publication in ApJ Letter

    Curie-like paramagnetism due to incomplete Zhang-Rice singlet formation in La2-xSrxCuO4

    Full text link
    In an effort to elucidate the origin of the Curie-like paramagnetism that is generic for heavily-overdoped cuprates, we have performed high transverse-field muon spin rotation (TF-muSR) measurements of La2-xSrxCuO4 single crystals over the Sr content range 0.145 < x < 0.33. We show that the x-dependence of the previously observed field-induced broadening of the internal magnetic field distribution above the superconducting transition temperature Tc reflects the presence of two distinct contributions. One of these becomes less pronounced with increasing x and is attributed to diminishing antiferromagnetic correlations. The other grows with increasing x, but decreases above x ~ 0.30, and is associated with the Curie-like term in the bulk magnetic susceptibility. In contrast to the Curie-like term, however, this second contribution to the TF-muSR line width extends back into the underdoped regime. Our findings imply a coexistence of antiferromagnetically correlated and paramagnetic moments, with the latter becoming dominant beyond x ~ 0.185. This suggests that the doped holes do not neutralize all Cu spins via the formation of Zhang-Rice singlets. Moreover, the paramagnetic component of the TF-muSR line width is explained by holes progressively entering the Cu 3d_{x^2-y^2} orbital with doping.Comment: 8 pages, 7 figure

    Comment about constraints on nanometer-range modifications to gravity from low-energy neutron experiments

    Full text link
    A topic of present interest is the application of experimentally observed quantum mechanical levels of ultra-cold neutrons in the earth's gravitational field for searching short-range modifications to gravity. A constraint on new forces in the nanometer-range published by Nesvizhevsky and Protasov follows from inadequate modelling of the interaction potential of a neutron with a mirror wall. Limits by many orders of magnitude better were already derived long ago from the consistency of experiments on the neutron-electron interaction.Comment: three page

    Near term measurements with 21 cm intensity mapping: neutral hydrogen fraction and BAO at z<2

    Full text link
    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54<z<1.09. This compares favourably to current measurements, uses independent techniques, and would settle the controversy over an important parameter which impacts galaxy formation studies. In addition, a 4000 hour survey would allow for the detection of baryon acoustic oscillations, giving a cosmological distance measure at 3.5% precision. These observation time requirements could be greatly reduced with the construction of multiple pixel receivers. Similar results are possible using prototypes for dedicated cylindrical telescopes on month time scales, or SKA pathfinder aperture arrays on day time scales. Such measurements promise to improve our understanding of these quantities while beating a path for future generations of hydrogen surveys.Comment: 6 pages, 5 figures. Submitted to Phys. Rev. D. Addressed reviewer comments. Changed figure format, added more detailed technical discussion, and added forecasts for aperture arrays. Added references
    • …
    corecore