30,759 research outputs found

    Positronium ions and molecules

    Get PDF
    Recent theoretical studies on positronium ions and molecules are discussed. A positronium ion is a three particle system consisting of two electrons in singlet spin state, and a positron. Recent studies include calculations of its binding energy, positron annihilation rate, and investigations of its doubly excited resonant states. A positronium molecule is a four body system consisting of two positrons and two electrons in an overall singlet spin state. The recent calculations of its binding energy against the dissociation into two positronium atoms, and studies of auto-detaching states in positronium molecules are discussed. These auto-dissociating states, which are believed to be part of the Rydberg series as a result of a positron attaching to a negatively charged positronium ion, Ps-, would appear as resonances in Ps-Ps scattering

    Oscillator strengths for OII ions

    Get PDF
    Oscillator strengths between various doublet states of OII ions are calculated in which extensive multi-configuration wave functions are used. The lower levels for the transitions are of the 2p(3) D(2)o and 2p(3) 2po states, and the upper levels are 2p(4), 3s, and 3d states. The results, which are estimated to have errors of less than 10% for individual transitions, agree quite well with the beam foil experiments, as well as with the calculations by use of the non-closed shell many electron theory (NCMET). The agreement with the rocket measurements is also good except for the 538/581 A pair, in which the 538 A line is believed to be blend with the other stronger quartet line. However, a comparison with the recent branching ratio measurement indicates that discrepances between the present calculation and th experiment do exist for certain transistions

    Analysis of opposed jet hydrogen-air counter flow diffusion flame

    Get PDF
    A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented

    Binding Energies and Scattering Observables in the ^3He^4He_2 Atomic System

    Full text link
    The ^3He^4He_2 three-atomic system is studied on the basis of a hard-core version of the Faddeev differential equations. The binding energy of the ^3He^4He_2 trimer, scattering phase shifts, and the scattering length of a ^3He atom off a ^4He dimer are calculated using the LM2M2 and TTY He-He interatomic potentials.Comment: Contribution to Proceedings of the 17th International IUPAP Conference on Few-Body Problems in Physics (Durham, North Carolina, USA, June 5-10, 2003

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Lowest Open Channels, Bound States, and Narrow Resonances of Dipositronium

    Full text link
    The constraints imposed by symmetry on the open channels of dipositronium has been studied, and the symmetry-adapted lowest open channel of each quantum state has been identified. Based on this study, the existence of two more 0^+ bound states has been theoretically confirmed, and a 0^+ narrow resonance has been predicted. A variational calculation has been performed to evaluate the critical strength of the repulsive interaction . Two 0^- states are found to have their critical strengths very close to 1, they are considered as candidates of new narrow resonances or loosely bound states .Comment: 10 pages, 0 figure
    • …
    corecore