48,045 research outputs found
Sundual characterizations of the translation group of R
We characterize the first three sundual spaces of C-0(R), with respect to the translation group of R
Geometry and seismic properties of the subducting Cocos plate in central Mexico
The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans-Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low-velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson's and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure. The evidence of high water content within the oceanic crust explains the flat subduction geometry without strong coupling of two plates. This may also explain the nonvolcanic tremor activity and slow slip events occurring in the subducting plate and the overlying crust
Spin-Statistics Violations in Superstring Theory
I describe how superstring theory may violate spin-statistics in an
experimentally observable manner. Reviewing the basics of superstring
interactions and how to utilize these to produce a statistical phase, I then
apply these ideas to two specific examples. The first is the case of heterotic
worldsheet linkings, whereby one small closed string momentarily enlarges
sufficiently to pass over another, producing such a statistical phase. The
second is the braneworld model with noncommutative geometry, whereby matter
composed of open strings may couple to a background in which spacetime
coordinates do not commute, modifying the field (anti)commutator algebra. I
conclude with ways to sharpen and experimentally test these exciting avenues to
possibly verify superstring theory.Comment: 18 pages, 3 figures; v2: references added and typos correcte
Adaptively Smoothed Seismicity Earthquake Forecasts for Italy
We present a model for estimating the probabilities of future earthquakes of
magnitudes m > 4.95 in Italy. The model, a slightly modified version of the one
proposed for California by Helmstetter et al. (2007) and Werner et al. (2010),
approximates seismicity by a spatially heterogeneous, temporally homogeneous
Poisson point process. The temporal, spatial and magnitude dimensions are
entirely decoupled. Magnitudes are independently and identically distributed
according to a tapered Gutenberg-Richter magnitude distribution. We estimated
the spatial distribution of future seismicity by smoothing the locations of
past earthquakes listed in two Italian catalogs: a short instrumental catalog
and a longer instrumental and historical catalog. The bandwidth of the adaptive
spatial kernel is estimated by optimizing the predictive power of the kernel
estimate of the spatial earthquake density in retrospective forecasts. When
available and trustworthy, we used small earthquakes m>2.95 to illuminate
active fault structures and likely future epicenters. By calibrating the model
on two catalogs of different duration to create two forecasts, we intend to
quantify the loss (or gain) of predictability incurred when only a short but
recent data record is available. Both forecasts, scaled to five and ten years,
were submitted to the Italian prospective forecasting experiment of the global
Collaboratory for the Study of Earthquake Predictability (CSEP). An earlier
forecast from the model was submitted by Helmstetter et al. (2007) to the
Regional Earthquake Likelihood Model (RELM) experiment in California, and, with
over half of the five-year experiment over, the forecast performs better than
its competitors.Comment: revised manuscript. 22 pages, 3 figures, 2 table
Shock-turbulence interactions in a reacting flow
A specific reactive flow configuration, the interaction of a detonation wave with convected homogeneous isotropic weak turbulence (which can be constructed by a Fourier synthesis of small amplitude shear waves) is addressed. The effect of chemical heat release on the rms fluctuations downstream of the detonation is presented as a function of Mach number. In addition, for the particular case of the von Karman spectrum, the one dimensional power spectra of these flow quantities is given
Role of acoustics in flame/vortex interactions
The role of acoustics in flame/vortex interactions is examined via asymptotic analysis and numerical simulation. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are allowed to mix and react by convection and diffusion in the presence of an acoustic field or a time-varying pressure field of small amplitude. The main emphasis is on the influence of the acoustics on the ignition time and flame structure as a function of vortex Reynolds number and initial temperature differences of the reactants
- …
