46 research outputs found

    Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells

    Get PDF
    Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).Matsuzaki T., Kawano Y., Horikiri M., et al. Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells. STAR Protocols 4, 102471 (2023); https://doi.org/10.1016/j.xpro.2023.102471

    Anastrozole-related acute hepatitis with autoimmune features: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two cases of acute hepatitis occurring during treatment with anastrozole have previously been reported, but the underlying mechanisms of liver injury are still uncertain. We report the case of anastrozole-related acute hepatitis with some autoimmune features.</p> <p>Case presentation</p> <p>A 70-year-old woman developed acute hepatitis associated with serum antinuclear antibodies during anastrozole treatment; after drug withdrawal, liver function parameters rapidly improved and serum auto-antibodies were no longer detectable.</p> <p>Conclusions</p> <p>Anastrozole-induced hepatotoxicity is a very rare event. Drug-drug interactions or metabolically-mediated damage might be involved, with a possible role of individual susceptibility. Our report suggests that an immune-mediated mechanism may also be considered in anastrozole-related liver injury.</p

    Editing the genome of hiPSC with CRISPR/Cas9: disease models

    Get PDF

    Numerical study of unsteady airflow phenomena in a ventilated room

    No full text
    Numerical simulation of airflow in an indoor environment has been carried out for forced, natural, and mixed convection modes, respectively, by using the computational fluid dynamics (CFD) approach of solving the Reynolds-averaged Navier−Stokes equations. Three empty model rooms in two-dimensional configuration were studied first; focusing on the effects of grid refinement, mesh topology, and turbulence model. It was found that structured mesh results were in better agreement with available experimental measurements for all three convection scenarios, while the renormalized group (RNG) к − ε turbulence model produced better results for both forced and mixed convections and the shear stress transport (SST) turbulence model for the natural convection prediction. Further studies of air velocity and temperature distributions in a three-dimensional cubic model room with and without an obstacle have shown reasonably good agreement with available test data at the measuring points. CFD results exhibited some unsteady flow phenomena that have not yet been observed or reported in previous experimental studies for the same problem. After analyzing the time history of velocity and temperature data using fast Fourier transformation (FFT), it was found that both air velocity and temperature field oscillated at low frequencies up to 0.4 Hz and the most significant velocity oscillations occurred at a vertical height of an ankle level (0.1 m) from the floor, where temperature oscillation was insignificant. The reasons for this flow unsteadiness were possibly a higher Grashof number, estimated at 0.5 × 106 based inflow conditions, and thus strong buoyancy driven effects caused the oscillations in the flow field. The appearance of an obstacle in the room induced flow separation at its sharp edges and this would further enhance the oscillations due to the unsteady nature of detached shear-layer flow

    Numerical study of unsteady airflow phenomena in a ventilated room

    No full text
    Numerical simulation of airflow in an indoor environment has been carried out for forced, natural, and mixed convection modes, respectively, by using the computational fluid dynamics (CFD) approach of solving the Reynolds-averaged Navier?Stokes equations. Three empty model rooms in two-dimensional configuration were studied first; focusing on the effects of grid refinement, mesh topology, and turbulence model. It was found that structured mesh results were in better agreement with available experimental measurements for all three convection scenarios, while the renormalized group (RNG) ? ? ? turbulence model produced better results for both forced and mixed convections and the shear stress transport (SST) turbulence model for the natural convection prediction. Further studies of air velocity and temperature distributions in a three-dimensional cubic model room with and without an obstacle have shown reasonably good agreement with available test data at the measuring points. CFD results exhibited some unsteady flow phenomena that have not yet been observed or reported in previous experimental studies for the same problem. After analyzing the time history of velocity and temperature data using fast Fourier transformation (FFT), it was found that both air velocity and temperature field oscillated at low frequencies up to 0.4 Hz and the most significant velocity oscillations occurred at a vertical height of an ankle level (0.1 m) from the floor, where temperature oscillation was insignificant. The reasons for this flow unsteadiness were possibly a higher Grashof number, estimated at 0.5 × 106 based inflow conditions, and thus strong buoyancy driven effects caused the oscillations in the flow field. The appearance of an obstacle in the room induced flow separation at its sharp edges and this would further enhance the oscillations due to the unsteady nature of detached shear-layer flow.</p
    corecore