63,387 research outputs found
Discovery of a remarkable subpulse drift pattern in PSR B0818-41
We report the discovery of a remarkable subpulse drift pattern in the
relatively less studied wide profile pulsar, B0818-41, using high sensitivity
GMRT observations. We find simultaneous occurrence of three drift regions with
two different drift rates: an inner region with steeper apparent drift rate
flanked on each side by a region of slower apparent drift rate. Furthermore,
these closely spaced drift bands always maintain a constant phase relationship.
Though these drift regions have significantly different values for the measured
P2, the measured P3 value is the same and equal to 18.3 P1. We interpret the
unique drift pattern of this pulsar as being created by the intersection of our
line of sight (LOS) with two conal rings on the polar cap of a fairly aligned
rotator (inclination angle alpha ~ 11 deg), with an ``inner'' LOS geometry
(impact angle beta ~ -5.4 deg). We argue that both the rings have the same
values for the carousel rotation periodicity P4 and the number of sparks Nsp.
We find that Nsp is 19-21 and show that it is very likely that, P4 is the same
as the measured P3, making it a truly unique pulsar. We present results from
simulations of the radiation pattern using the inferred parameters, that
support our interpretations and reproduce the average profile as well as the
observed features in the drift pattern quite well.Comment: 5 pages and 7 figures, Accepted for publication in MNRAS Letter
All spherically symmetric charged anisotropic solutions for compact star
In the present paper we develop an algorithm for all spherically symmetric
anisotropic charged fluid distribution. Considering a new source function
we find out a set of solutions which is physically well behaved and
represent compact stellar models. A detailed study specifically shows that the
models actually correspond to strange stars in terms of their mass and radius.
In this connection we investigate about several physical properties like energy
conditions, stability, mass-radius ratio, electric charge content, anisotropic
nature and surface redshift through graphical plots and mathematical
calculations. All the features from these studies are in excellent agreement
with the already available evidences in theory as well as observations.Comment: 28 pages, 15 figures, major changes in the text. arXiv admin note:
text overlap with arXiv:1408.5126 by other author
Recommended from our members
Explore parameter sensitivities and model calibration in a locally coupled environment
A locally coupled Single Column Model (SCM) was used for sensitivity analysis and model calibration. The sensitivity analysis was used to identify 32 land-surface parameters which appeared to be more or less sensitive in the locally coupled environment. The multi-objective sensitive analysis shows that the land surface-atmosphere interactions could have significant influences on the model parameter sensitivities. The calibration results suggest that it is crucial to include both land-surface and atmospheric parameters in the calibration of a coupled land surface model
Solar thermal plant impact analysis and requirements definition
Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed
Chiral Phase Transition in Lattice QCD with Wilson Quarks
The nature of the chiral phase transition in lattice QCD is studied for the
cases of 2, 3 and 6 flavors with degenerate Wilson quarks, mainly on a lattice
with the temporal direction extension . We find that the chiral phase
transition is continuous for the case of 2 flavors, while it is of first order
for 3 and 6 flavors.Comment: uuencoded compressed tar file, LaTeX, 14 pages, 7 figure
Understanding the effects of geometry and rotation on pulsar intensity profiles
We have developed a method to compute the possible distribution of radio
emission regions in a typical pulsar magnetosphere, taking into account the
viewing geometry and rotational effects of the neutron star. Our method can
estimate the emission altitude and the radius of curvature of particle
trajectory as a function of rotation phase for a given inclination angle,
impact angle, spin-period, Lorentz factor, field line constant and the
observation frequency. Further, using curvature radiation as the basic emission
mechanism, we simulate the radio intensity profiles that would be observed from
a given distribution of emission regions, for different values of radio
frequency and Lorentz factor. We show clearly that rotation effects can
introduce significant asymmetries into the observed radio profiles. We
investigate the dependency of profile features on various pulsar parameters. We
find that the radiation from a given ring of field lines can be seen over a
large range of pulse longitudes, originating at different altitudes, with
varying spectral intensity. Preferred heights of emission along discrete sets
of field lines are required to reproduce realistic pulsar profiles, and we
illustrate this for a known pulsar. Finally, we show how our model provides
feasible explanations for the origin of core emission, and also for one-sided
cones which have been observed in some pulsars.Comment: 21 pages, 11 figures, accepted for publication in MNRA
Duration distributions for different softness groups of gamma-ray bursts
Gamma-ray bursts (GRBs) are divided into two classes according to their
durations. We investigate if the softness of bursts plays a role in the
conventional classification of the objects. We employ the BATSE (Burst and
Transient Source Experiment) catalog and analyze the duration distributions of
different groups of GRBs associated with distinct softness. Our analysis
reveals that the conventional classification of GRBs with the duration of
bursts is influenced by the softness of the objects. There exits a bimodality
in the duration distribution of GRBs for each group of bursts and the time
position of the dip in the bimodality histogram shifts with the softness
parameter. Our findings suggest that the conventional classification scheme
should be modified by separating the two well-known populations in different
softness groups, which would be more reasonable than doing so with a single
sample. According to the relation between the dip position and the softness
parameter, we get an empirical function that can roughly set apart the
short-hard and long-soft bursts: , where is the softness parameter adopted in this paper.Comment: 20 pages, 10 figure
- …
