63,387 research outputs found

    Discovery of a remarkable subpulse drift pattern in PSR B0818-41

    Full text link
    We report the discovery of a remarkable subpulse drift pattern in the relatively less studied wide profile pulsar, B0818-41, using high sensitivity GMRT observations. We find simultaneous occurrence of three drift regions with two different drift rates: an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, these closely spaced drift bands always maintain a constant phase relationship. Though these drift regions have significantly different values for the measured P2, the measured P3 value is the same and equal to 18.3 P1. We interpret the unique drift pattern of this pulsar as being created by the intersection of our line of sight (LOS) with two conal rings on the polar cap of a fairly aligned rotator (inclination angle alpha ~ 11 deg), with an ``inner'' LOS geometry (impact angle beta ~ -5.4 deg). We argue that both the rings have the same values for the carousel rotation periodicity P4 and the number of sparks Nsp. We find that Nsp is 19-21 and show that it is very likely that, P4 is the same as the measured P3, making it a truly unique pulsar. We present results from simulations of the radiation pattern using the inferred parameters, that support our interpretations and reproduce the average profile as well as the observed features in the drift pattern quite well.Comment: 5 pages and 7 figures, Accepted for publication in MNRAS Letter

    All spherically symmetric charged anisotropic solutions for compact star

    Full text link
    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distribution. Considering a new source function ν(r)\nu(r) we find out a set of solutions which is physically well behaved and represent compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate about several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidences in theory as well as observations.Comment: 28 pages, 15 figures, major changes in the text. arXiv admin note: text overlap with arXiv:1408.5126 by other author

    Solar thermal plant impact analysis and requirements definition

    Get PDF
    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed

    Chiral Phase Transition in Lattice QCD with Wilson Quarks

    Get PDF
    The nature of the chiral phase transition in lattice QCD is studied for the cases of 2, 3 and 6 flavors with degenerate Wilson quarks, mainly on a lattice with the temporal direction extension Nt=4N_t=4. We find that the chiral phase transition is continuous for the case of 2 flavors, while it is of first order for 3 and 6 flavors.Comment: uuencoded compressed tar file, LaTeX, 14 pages, 7 figure

    Understanding the effects of geometry and rotation on pulsar intensity profiles

    Full text link
    We have developed a method to compute the possible distribution of radio emission regions in a typical pulsar magnetosphere, taking into account the viewing geometry and rotational effects of the neutron star. Our method can estimate the emission altitude and the radius of curvature of particle trajectory as a function of rotation phase for a given inclination angle, impact angle, spin-period, Lorentz factor, field line constant and the observation frequency. Further, using curvature radiation as the basic emission mechanism, we simulate the radio intensity profiles that would be observed from a given distribution of emission regions, for different values of radio frequency and Lorentz factor. We show clearly that rotation effects can introduce significant asymmetries into the observed radio profiles. We investigate the dependency of profile features on various pulsar parameters. We find that the radiation from a given ring of field lines can be seen over a large range of pulse longitudes, originating at different altitudes, with varying spectral intensity. Preferred heights of emission along discrete sets of field lines are required to reproduce realistic pulsar profiles, and we illustrate this for a known pulsar. Finally, we show how our model provides feasible explanations for the origin of core emission, and also for one-sided cones which have been observed in some pulsars.Comment: 21 pages, 11 figures, accepted for publication in MNRA

    Duration distributions for different softness groups of gamma-ray bursts

    Full text link
    Gamma-ray bursts (GRBs) are divided into two classes according to their durations. We investigate if the softness of bursts plays a role in the conventional classification of the objects. We employ the BATSE (Burst and Transient Source Experiment) catalog and analyze the duration distributions of different groups of GRBs associated with distinct softness. Our analysis reveals that the conventional classification of GRBs with the duration of bursts is influenced by the softness of the objects. There exits a bimodality in the duration distribution of GRBs for each group of bursts and the time position of the dip in the bimodality histogram shifts with the softness parameter. Our findings suggest that the conventional classification scheme should be modified by separating the two well-known populations in different softness groups, which would be more reasonable than doing so with a single sample. According to the relation between the dip position and the softness parameter, we get an empirical function that can roughly set apart the short-hard and long-soft bursts: SP=(0.100±0.028)T90(0.85±0.18)SP = (0.100 \pm 0.028) T_{90}^{-(0.85 \pm 0.18)}, where SPSP is the softness parameter adopted in this paper.Comment: 20 pages, 10 figure
    corecore