183 research outputs found
Variability in energy cost of running at the end of a triathlon and a marathon
International audienceThe aim of this study was to investigate the increase in energy cost of running occurring at the end of a triathlon and a marathon event and to link them to the metabolic and hormonal changes, as well as to variations in stride length. Seven subjects took part in 3 experimental situations: a 2 h 15 min triathlon (30 min swimming, 60 min cycling and 45 min running), a 2 h 15 min marathon (MR) were the fast 45 min were run at the same speed as the triathlon run (TR), and a 45 min isolated run (IR) done at triathlon speed. The results show that energy cost during MR was higher than during TR (p < 0.01) (+ 8.9 %). Similar observations were made for pulmonary ventilation (+ 7.9 %) and heart rate (+ 6.3 %). Moreover, the values were significantly greater than the values obtained during the IR. TR and MR lead to greater weight loss (p < 0.01) (2.4Β±0.3 kg) than IR (1 Β± 0.2 kg). The triathlon and the marathon produced a large decrease in plasma volume (respectively 19.6 Β± 1.4 % and 12.9 Β± 1.1 %) compared to IR (2 Β± 0.4 %). Plasma renin activity was higher for the triathlon and the marathon than for the IR (p < 0.01). MR produces a significantly greater increase in plasma free fatty acids (F.F.A.) than TR (p < 0.05) and IR (p < 0.01). In addition, the F.F.A. at the end of TR were significantly higher than IR (p < 0.05). At the end of the trial the mean stride lengths for TR and IR were greater (+ 15 %) (p <0.01) than for MR. This study, carried out with subjects running overground, confirms the decrease in running efficiency previously shown at the end of a laboratory triathlon, and demonstrates that this decrease is lower than that occurring during a marathon
Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression
<p>Abstract</p> <p>Background</p> <p>In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets.</p> <p>Results</p> <p>Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4<sup>+ </sup>T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression.</p> <p>Conclusion</p> <p>In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches.</p
Mutants in the Mouse NuRD/Mi2 Component P66Ξ± Are Embryonic Lethal
The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems.We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing.mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing
Proteins that bind methylated DNA and human cancer: reading the wrong words
DNA methylation and the machinery involved in epigenetic regulation are key elements in the maintenance of cellular homeostasis. Epigenetic mechanisms are involved in embryonic development and the establishment of tissue-specific expression, X-chromosome inactivation and imprinting patterns, and maintenance of chromosome stability. The balance between all the enzymes and factors involved in DNA methylation and its interpretation by different groups of nuclear factors is crucial for normal cell behaviour. In cancer and other diseases, misregulation of epigenetic marks is a common feature, also including DNA methylation and histone post-translational modifications. In this scenario, it is worth mentioning a family of proteins characterized by the presence of a methyl-CpG-binding domain (MBDs) that are involved in interpreting the information encoded by DNA methylation and the recruitment of the enzymes responsible for establishing a silenced state of the chromatin. The generation of novel aberrantly hypermethylated regions during cancer development and progression makes MBD proteins interesting targets for their biological and clinical implications
Stress-Induced PARP Activation Mediates Recruitment of Drosophila Mi-2 to Promote Heat Shock Gene Expression
Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases (PARP). Little is known about the role of this modification during cellular stress responses. We show here that the nucleosome remodeler dMi-2 is recruited to active HS genes in a PARPβdependent manner. dMi-2 binds PAR suggesting that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for an efficient and timely transcriptional response
SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes
Contains fulltext :
94049.pdf (publisher's version ) (Open Access
DNA methylation and methyl-CpG binding proteins: developmental requirements and function
DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function
- β¦