1,076 research outputs found

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.

    Intermetallic compounds in heterogeneous catalysis - a quickly developing field

    No full text
    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition

    Unconventional magnetism in multivalent charge-ordered YbPtGe2_2 probed by 195^{195}Pt- and 171^{171}Yb-NMR

    Full text link
    Detailed 195^{195}Pt- and 171^{171}Yb nuclear magnetic resonance (NMR) studies on the heterogeneous mixed valence system YbPtGe2_2 are reported. The temperature dependence of the 195^{195}Pt-NMR shift 195K(T)^{195}K(T) indicates the opening of an unusual magnetic gap below 200\,K. 195K(T)^{195}K(T) was analyzed by a thermal activation model which yields an isotropic gap Δ/kB200\Delta/k_B \approx 200\,K. In contrast, the spin-lattice relaxation rate 195^{195}(1/T11/T_1) does not provide evidence for the gap. Therefore, an intermediate-valence picture is proposed while a Kondo-insulator scenario can be excluded. Moreover, 195^{195}(1/T11/T_1) follows a simple metallic behavior, similar to the reference compound YPtGe2_2. A well resolved NMR line with small shift is assigned to divalent 171^{171}Yb. This finding supports the proposed model with two sub-sets of Yb species (di- and trivalent) located on the Yb2 and Yb1 site of the YbPtGe2_2 lattice.Comment: Submitted in Physical Review B (Rapid Communication

    Separable Structure of Many-Body Ground-State Wave Function

    Full text link
    We have investigated a general structure of the ground-state wave function for the Schr\"odinger equation for NN identical interacting particles (bosons or fermions) confined in a harmonic anisotropic trap in the limit of large NN. It is shown that the ground-state wave function can be written in a separable form. As an example of its applications, this form is used to obtain the ground-state wave function describing collective dynamics for NN trapped bosons interacting via contact forces.Comment: J. Phys. B: At. Mol. Opt. Phys. 33 (2000) (accepted for publication

    Electron Microscopy Investigation on Empty Germanium Clathrate-II

    Get PDF

    On the origin of heavy quasiparticles in LiV_2O_4

    Full text link
    An explanation is provided for the heavy quasiparticle excitations in LiV_2O_4. It differs considerably from that of other known heavy-fermion systems. Main ingredients of our theory are the cubic spinel structure of the material and strong short-range correlations of the d electrons. The large gamma-coefficient is shown to result from excitations of Heisenberg spin 1/2 rings and chains. The required coupling constant is calculated from LDA+U calculations and is found to be of the right size. Also the calculated Sommerfeld-Wilson ratio is reasonably close to the observed one.Comment: REVTEX, 5 pages, 2 figure

    Inertial parameters and superfluid-to-normal phase transition in superdeformed bands

    Get PDF
    The quasiclassically exact solution for the second inertial parameter B\cal B is found in self-consistent way. It is shown that superdeformation and nonuniform pairing arising from the rotation induced pair density significantly reduce this inertial parameter. The different limiting cases for B\cal B, which allow to study an interplay between rapid rotation, pairing correlations, and mean field deformation, are considered. The new signature for the transition from pairing to normal phase is suggested in terms of the variation of B/A{\cal B}/{\cal A} versus spin. Experimental data indicate the existence of such transition in the three superdeformed mass regions.Comment: 8 pages, LaTeX, 3 figure
    corecore