342 research outputs found

    Tc suppression and resistivity in cuprates with out of plane defects

    Full text link
    Recent experiments introducing controlled disorder into optimally doped cuprate superconductors by both electron irradiation and chemical substitution have found unusual behavior in the rate of suppression of the critical temperature Tc vs. increase in residual resistivity. We show here that the unexpected discovery that the rate of Tc suppression vs. resistivity is stronger for out-of-plane than for in-plane impurities may be explained by consistent calculation of both Tc and resistivity if the potential scattering is assumed to be nearly forward in nature. For realistic models of impurity potentials, we further show that significant deviations from the universal Abrikosov-Gor'kov Tc suppression behavior may be expected for out of plane impurities.Comment: 6 pages, 5 figure

    Volovik effect in a highly anisotropic multiband superconductor: experiment and theory

    Get PDF
    We present measurements of the specific heat coefficient \gamma(= C/T) in the low temperature limit as a function of an applied magnetic field for the Fe-based superconductor BaFe2_2(As0.7_{0.7}P0.3_{0.3})2_2. We find both a linear regime at higher fields and a limiting square root HH behavior at very low fields. The crossover from a Volovik-like H\sqrt{H} to a linear field dependence can be understood from a multiband calculation in the quasiclassical approximation assuming gaps with different momentum dependence on the hole- and electron-like Fermi surface sheets.Comment: 11 pages, 8 figures, 1 table, submitted to Phys. Rev.

    Structure of BSCCO supermodulation from ab initio calculations

    Full text link
    We present results of density functional theory (DFT) calculation of the structural supermodulation in BSCCO-2212 structure, and show that the supermodulation is indeed a spontaneous symmetry breaking of the nominal crystal symmetry, rather than a phenomenon driven by interstitial O dopants. The structure obtained is in excellent quantitative agreement with recent x-ray studies, and reproduces several qualitative aspects of scanning tunnelling microscopy (STM) experiments as well. The primary structural modulation affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5 half-octahedra, with maximum tilt angle near the phase of the supermodulation where recent STM experiments have discovered an enhancement of the superconducting gap. We argue that the tilting of the half-octahedra and concommitant planar buckling are directly modulating the superconducting pair interaction.Comment: 4 pages, 3 figure

    Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors

    Full text link
    A recently developed theory for the problem of Andreev reflection between a normal metal (N) and a multiband superconductor (MBS) assumes that the incident wave from the normal metal is coherently transmitted through several bands inside the superconductor. Such splitting of the probability amplitude into several channels is the analogue of a quantum waveguide. Thus, the appropriate matching conditions for the wave function at the N/MBS interface are derived from an extension of quantum waveguide theory. Interference effects between the transmitted waves inside the superconductor manifest themselves in the conductance. We provide results for a FeAs superconductor, in the framework of a recently proposed effective two-band model and two recently proposed gap symmetries: in the sign-reversed s-wave (Δcos(kx)cos(ky)\Delta\cos(k_x)\cos(k_y)) scenario resonant transmission through surface Andreev bound states (ABS) at nonzero energy is found as well as destructive interference effects that produce zeros in the conductance; in the extended s-wave (Δ[cos(kx)+cos(ky)]\Delta[\cos(k_x)+\cos(k_y)]) scenario no ABS at finite energy are found.Comment: 4 pages, 5 figure

    Repulsion and attraction in high Tc superconductors

    Full text link
    The influence of repulsion and attraction in high-Tc superconductors to the gap functions is studied. A systematic method is proposed to compute the gap functions using the irreducible representations of the point group. It is found that a pure s-wave superconductivity exists only at very low temperatures, and attractive potentials on the near shells significantly expand the gap functions and increase significantly the critical temperature of superconductivity. A strong on-site repulsion drives the A1gA_{1g} gap into a B1gB_{1g} gap. It is expected that superconductivity with the A1gA_{1g} symmetry reaches a high critical temperature due to the cooperation of the on-site and the next-nearest neighbor attractions.Comment: 4 pages, 5figure

    Simple Real-Space Picture of Nodeless and Nodal s-wave Gap Functions in Iron Pnictide Superconductors

    Full text link
    We propose a simple way to parameterize the gap function in iron pnictides. The key idea is to use orbital representation, not band representation, and to assume real-space short-range pairing. Our parameterization reproduces fairly well the structure of gap function obtained in microscopic calculation. At the same time the present parameterization is simple enough to obtain an intuitive picture and to develop a phenomenological theory. We also discuss simplification of the treatment of the superconducting state.Comment: 4 page

    Single vortex structure in two models of iron pnictide s±s^\pm superconductivity

    Full text link
    The structure of a single vortex in a FeAs superconductor is studied in the framework of two formulations of superconductivity for the recently proposed sign-reversed ss wave (s±s^\pm) scenario: {\it (i)} a continuum model taking into account the existence of an electron and a hole band with a repulsive local interaction between the two; {\it (ii)} a lattice tight-binding model with two orbitals per unit cell and a next-nearest-neighbour attractive interaction. In the first model, the local density of states (LDOS) at the vortex centre, as a function of energy, exhibits a peak at the Fermi level, while in the second model such LDOS peak is deviated from the Fermi level and its energy depends on band filling. An impurity located outside the vortex core has little effect on the LDOS peak, but an impurity close to the vortex core can almost suppress it and modify its position.Comment: 17 pages, 15 figures. Accepted for publication in New Journal of Physic

    Time scales of epidemic spread and risk perception on adaptive networks

    Full text link
    Incorporating dynamic contact networks and delayed awareness into a contagion model with memory, we study the spreading patterns of infectious diseases in connected populations. It is found that the spread of an infectious disease is not only related to the past exposures of an individual to the infected but also to the time scales of risk perception reflected in the social network adaptation. The epidemic threshold pcp_{c} is found to decrease with the rise of the time scale parameter s and the memory length T, they satisfy the equation pc=1T+ωTas(1eωT2/as)p_{c} =\frac{1}{T}+ \frac{\omega T}{a^s(1-e^{-\omega T^2/a^s})}. Both the lifetime of the epidemic and the topological property of the evolved network are considered. The standard deviation σd\sigma_{d} of the degree distribution increases with the rise of the absorbing time tct_{c}, a power-law relation σd=mtcγ\sigma_{d}=mt_{c}^\gamma is found

    Evidence for Nodal superconductivity in Sr2_{2}ScFePO3_{3}

    Full text link
    Point contact Andreev reflection spectra have been taken as a function of temperature and magnetic field on the polycrystalline form of the newly discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak which disappears at the superconducting transition temperature, dominates all of the spectra. Data taken in high magnetic fields show that this feature survives until 7T at 2K and a flattening of the feature is observed in some contacts. Here we inspect whether these observations can be interpreted within a d-wave, or nodal order parameter framework which would be consistent with the recent theoretical model where the height of the P in the Fe-P-Fe plane is key to the symmetry of the superconductivity. However, in polycrystalline samples care must be taken when examining Andreev spectra to eliminate or take into account artefacts associated with the possible effects of Josephson junctions and random alignment of grains.Comment: Published versio
    corecore