57 research outputs found

    Cashew nut allergy: clinical relevance and allergen characterisation

    Get PDF
    Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world's population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.This work was supported by FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 with grant no. UID/QUI/50006/2013–POCI/01/ 0145/FEDER/007265. Joana Costa is grateful to FCT post-doctoral grant (SFRH/BPD/102404/2014) financed by POPH-QREN (subsidised by FSE and MCTES).info:eu-repo/semantics/publishedVersio

    Dual-topology insertion of a dual-topology membrane protein

    Get PDF
    Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances

    Application of Answer Set Programming for Public Health Data Integration and Analysis

    No full text
    Part 1: ConferenceInternational audiencePublic health surveillance systems routinely process massive volumes of data to identify health adverse events affecting the general population. Surveillance and response to foodborne disease suffers from a number of systemic and other delays that hinder early detection and confirmation of emerging contamination situations. In this paper we develop an answer set programming (ASP) application to assist public health officials in detecting an emerging foodborne disease outbreak by integrating and analyzing in near real-time temporally, spatially and symptomatically diverse data. These data can be extracted from a large number of distinct information systems such as surveillance and laboratory reporting systems from health care providers, real-time complaint hotlines from consumers, and inspection reporting systems from regulatory agencies. We encode geographic ontologies in ASP to infer spatial relationships that may not be evident using traditional statistical tools. These technologies and ontologies have been implemented in a new informatics tool, the North Carolina Foodborne Events Data Integration and Analysis Tool (NCFEDA). The application was built to demonstrate the potential of situational awareness—created through real-time data fusion, analytics, visualization, and real-time communication—to reduce latency of response to foodborne disease outbreaks by North Carolina public health personnel
    corecore