1,481 research outputs found

    Charge Transport Properties of a Metal-free Phthalocyanine Discotic Liquid Crystal

    Full text link
    Discotic liquid crystals can self-align to form one-dimensional semiconducting wires, many tens of microns long. In this letter, we describe the preparation of semiconducting films where the stacking direction of the disc-like molecules is perpendicular to the substrate surface. We present measurements of the charge carrier mobility, applying temperature-dependent time-of-flight transient photoconductivity, space-charge limited current measurements, and field-effect mobility measurements. We provide experimental verification of the highly anisotropic nature of semiconducting films of discotic liquid crystals, with charge carrier mobilities of up to 2.8x10−3^{-3}cm2^2/Vs. These properties make discotics an interesting choice for applications such as organic photovoltaics.Comment: 5 pages, 5 figure

    Provenance for SPARQL queries

    Full text link
    Determining trust of data available in the Semantic Web is fundamental for applications and users, in particular for linked open data obtained from SPARQL endpoints. There exist several proposals in the literature to annotate SPARQL query results with values from abstract models, adapting the seminal works on provenance for annotated relational databases. We provide an approach capable of providing provenance information for a large and significant fragment of SPARQL 1.1, including for the first time the major non-monotonic constructs under multiset semantics. The approach is based on the translation of SPARQL into relational queries over annotated relations with values of the most general m-semiring, and in this way also refuting a claim in the literature that the OPTIONAL construct of SPARQL cannot be captured appropriately with the known abstract models.Comment: 22 pages, extended version of the ISWC 2012 paper including proof

    Molecular semiconductors and the Ioffe–Regel criterion: A terahertz study on band transport in DBTTT

    Get PDF
    Terahertz electromodulation spectroscopy provides insight into the physics of charge carrier transport in molecular semiconductors. The work focuses on thin-film devices of dibenzothiopheno[6,5-b:6′,5′-f]thieno[3,2-b]thiophene. Frequency-resolved data show a Drude-like response of the hole gas in the accumulation region. The temperature dependence of the mobilities follows a T1/2 power law. This indicates that the thermal mean free path of the charge carriers is restricted by disorder. Only a fraction of approximately 5% of the injected carriers fulfills the Ioffe–Regel criterion and participates in band transport.info:eu-repo/semantics/publishe

    First-Order Provenance Games

    Full text link
    We propose a new model of provenance, based on a game-theoretic approach to query evaluation. First, we study games G in their own right, and ask how to explain that a position x in G is won, lost, or drawn. The resulting notion of game provenance is closely related to winning strategies, and excludes from provenance all "bad moves", i.e., those which unnecessarily allow the opponent to improve the outcome of a play. In this way, the value of a position is determined by its game provenance. We then define provenance games by viewing the evaluation of a first-order query as a game between two players who argue whether a tuple is in the query answer. For RA+ queries, we show that game provenance is equivalent to the most general semiring of provenance polynomials N[X]. Variants of our game yield other known semirings. However, unlike semiring provenance, game provenance also provides a "built-in" way to handle negation and thus to answer why-not questions: In (provenance) games, the reason why x is not won, is the same as why x is lost or drawn (the latter is possible for games with draws). Since first-order provenance games are draw-free, they yield a new provenance model that combines how- and why-not provenance

    Discovering Crystal Forms of the Novel Molecular Semiconductor OEG-BTBT

    Get PDF
    This work is focused on a polymorphic and crystallographic study of a novel p-type organic semiconductor 2,7-bis(2-(2-methoxyethoxy)ethoxy)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (OEG-BTBT). The well-known BTBT core is functionalized by eight-atom-long oligoethylene glycol side chains. Our results demonstrate the discovery of three crystal forms of the OEG-BTBT molecule, namely, Form I, Form II, and Form III, in different experimental conditions. Crystal structures of Form I and Form III are reported, while only unit cell indexing of Form II could be determined. Form I and Form II are enantiotropically related, and Form II is stable at temperatures higher than 127 °C. The kinetics of transformation to Form II was studied by the Avrami equation. Form III is a solvate crystal form which is rarely observed in the field of organic electronics, and upon release of dichloromethane, it converts to Form I. Furthermore, we studied the mechanical properties of the Form I crystals, which exhibit plastic bending upon applying mechanical stress in the [100] direction. This distinct mechanical behavior is rationalized by the slip layer topology, the intermolecular interactions energies from energy frameworks, and the Hirshfeld surface analysis

    Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy

    Full text link
    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable due to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy, and deformability have---to the best of our knowledge---not been realized. Here, we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogous to the simplest chemical bond, where two isotropic orbitals hybridize into the molecular orbital of H2, these flexible groups redistribute upon binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, while anisotropic snowman-like particles self-assemble into hollow monolayer microcapsules. A modest change of the building blocks thus results in a significant leap in the complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into dramatically more complex structures than similar particles that are isotropic or non-deformable

    Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells

    Get PDF
    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector T cells and facilitating the presence of high regulatory T cell (Treg) frequencies. Knock-down of the sialic acid transporter created "sialic acid low" tumors, that grew slower in-vivo than hypersialylated tumors, altered the Treg/Teffector balance, favoring immunological tumor control. The enhanced effector T cell response in developing "sialic acid low" tumors was preceded by and dependent on an increased influx and activity of Natural Killer (NK) cells. Thus, tumor hypersialylation orchestrates immune escape at the level of NK and Teff/Treg balance within the tumor microenvironment, herewith dampening tumorspecific T cell control. Reducing sialylation provides a therapeutic option to render tumors permissive to immune attack

    Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs

    Get PDF
    Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices
    • …
    corecore