32,690 research outputs found

    Accurate Feature Extraction and Control Point Correction for Camera Calibration with a Mono-Plane Target

    Get PDF
    The paper addresses two problems related to 3D camera calibration using a single mono-plane calibration target with circular control marks. The first problem is how to compute accurately the locations of the features (ellipses) in images of the target. Since the structure of the control marks is known beforehand, we propose to use a shape-specific searching technique to find the optimal locations of the features. Our experiments have shown this technique generates more accurate feature locations than the state-of-the-art ellipse extraction methods. The second problem is how to refine the control mark locations with unknown manufacturing errors. We demonstrate in a case study, where the control marks are laser printed on a A4 paper, that the manufacturing errors of the control marks can be compensated to a good extent so that the remaining calibration errors are reduced significantly. 1

    Eu0.5_{0.5}Sr1.5_{1.5}MnO4_4: a three-dimensional XY spin glass

    Full text link
    The frequency, temperature, and dc-bias dependence of the ac-susceptibility of a high quality single crystal of the Eu0.5_{0.5}Sr1.5_{1.5}MnO4_4 layered manganite is investigated. Eu0.5_{0.5}Sr1.5_{1.5}MnO4_4 behaves like a XY spin glass with a strong basal anisotropy. Dynamical and static scalings reveal a three-dimensional phase transition near TgT_g = 18 K, and yield critical exponent values between those of Heisenberg- and Ising-like systems, albeit slightly closer to the Ising case. Interestingly, as in the latter system, the here observed rejuvenation effects are rather weak. The origin and nature of the low temperature XY spin glass state is discussed.Comment: REVTeX 4 style; 5 pages, 4 figure

    The Effects of Rotation on the Evolution of Rising Omega-loops in a Stratified Model Convection Zone

    Get PDF
    We present three-dimensional MHD simulations of buoyant magnetic flux tubes that rise through a stratified model convection zone in the presence of solar rotation. The equations of MHD are solved in the anelastic approximation, and the results are used to determine the effects of solar rotation on the dynamic evolution an Omega-loop. We find that the Coriolis force significantly suppresses the degree of fragmentation at the apex of the loop during its ascent toward the photosphere. If the initial axial field strength of the tube is reduced, then, in the absence of forces due to convective motions, the degree of apex fragmentation is also reduced. We show that the Coriolis force slows the rise of the tube, and induces a retrograde flow in both the magnetized and unmagnetized plasma of an emerging active region. Observationally, we predict that this flow will appear to originate at the leading polarity, and will terminate at the trailing polarity.Comment: 25 pages, 8 figures, ApJ in pres

    Party finance reform as constitutional engineering? The effectiveness and unintended consequences of party finance reform in France and Britain

    Get PDF
    In both Britain and France, party funding was traditionally characterized by a laissez faire approach and a conspicuous lack of regulation. In France, this was tantamount to a 'legislative vacuum'. In the last two decades, however, both countries have sought to fundamentally reform their political finance regulation regimes. This prompted, in Britain, the Political Parties, Elections and Referendums Act 2000, and in France a bout of 'legislative incontinence' — profoundly transforming the political finance regime between 1988 and 1995. This article seeks to explore and compare the impacts of the reforms in each country in a bid to explain the unintended consequences of the alternative paths taken and the effectiveness of the new party finance regime in each country. It finds that constitutional engineering through party finance reform is a singularly inexact science, largely due to the imperfect nature of information, the limited predictability of cause and effect, and the constraining influence of non-party actors, such as the Constitutional Council in France, and the Electoral Commission in Britain

    Density of Yang-Lee zeros for the Ising ferromagnet

    Full text link
    The densities of Yang-Lee zeros for the Ising ferromagnet on the L×LL\times L square lattice are evaluated from the exact grand partition functions (L=316L=3\sim16). The properties of the density of Yang-Lee zeros are discussed as a function of temperature TT and system size LL. The three different classes of phase transitions for the Ising ferromagnet, first-order phase transition, second-order phase transition, and Yang-Lee edge singularity, are clearly distinguished by estimating the magnetic scaling exponent yhy_h from the densities of zeros for finite-size systems. The divergence of the density of zeros at Yang-Lee edge in high temperatures (Yang-Lee edge singularity), which has been detected only by the series expansion until now for the square-lattice Ising ferromagnet, is obtained from the finite-size data. The identification of the orders of phase transitions in small systems is also discussed using the density of Yang-Lee zeros.Comment: to appear in Physical Review

    Numerical Results for the Ground-State Interface in a Random Medium

    Get PDF
    The problem of determining the ground state of a dd-dimensional interface embedded in a (d+1)(d+1)-dimensional random medium is treated numerically. Using a minimum-cut algorithm, the exact ground states can be found for a number of problems for which other numerical methods are inexact and slow. In particular, results are presented for the roughness exponents and ground-state energy fluctuations in a random bond Ising model. It is found that the roughness exponent ζ=0.41±0.01,0.22±0.01\zeta = 0.41 \pm 0.01, 0.22 \pm 0.01, with the related energy exponent being θ=0.84±0.03,1.45±0.04\theta = 0.84 \pm 0.03, 1.45 \pm 0.04, in d=2,3d = 2, 3, respectively. These results are compared with previous analytical and numerical estimates.Comment: 10 pages, REVTEX3.0; 3 ps files (separate:tar/gzip/uuencoded) for figure

    Competing orders, non-linear sigma models, and topological terms in quantum magnets

    Full text link
    A number of examples have demonstrated the failure of the Landau-Ginzburg-Wilson(LGW) paradigm in describing the competing phases and phase transitions of two dimensional quantum magnets. In this paper we argue that such magnets possess field theoretic descriptions in terms of their slow fluctuating orders provided certain topological terms are included in the action. These topological terms may thus be viewed as what goes wrong within the conventional LGW thinking. The field theoretic descriptions we develop are possible alternates to the popular gauge theories of such non-LGW behavior. Examples that are studied include weakly coupled quasi-one dimensional spin chains, deconfined critical points in fully two dimensional magnets, and two component massless QED3QED_3. A prominent role is played by an anisotropic O(4) non-linear sigma model in three space-time dimensions with a topological theta term. Some properties of this model are discussed. We suggest that similar sigma model descriptions might exist for fermionic algebraic spin liquid phases.Comment: 11 pages, 1 figur
    corecore