67,446 research outputs found
Recommended from our members
Dynamics of living cells in a cytomorphological state space.
Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotemporal scales, the behavior of ensembles of nonequilibrium systems can resemble that of a system at equilibrium. Here we apply this principle to a population of cells within a cytomorphological state space and demonstrate that cellular transition dynamics within this space can be described using equilibrium formalisms. We use this framework to map the effective energy landscape underlying the cytomorphological state space of a population of mouse embryonic fibroblasts (MEFs) and identify topographical nonuniformity in this space, indicating nonuniform occupation of cytomorphological states within an isogenic population. The introduction of exogenous apoptotic agents fundamentally altered this energy landscape, inducing formation of additional energy minima that correlated directly with changes in sensitivity to apoptosis induction. An equilibrium framework allows us to describe the behavior of an ensemble of single cells, suggesting that although cells are complex nonequilibrium systems, the application of formalisms derived from equilibrium thermodynamics can provide insight into the basis of nongenetic heterogeneities within cell populations, as well as the relationship between cytomorphological and functional heterogeneity
Unitary Fermi Gas in a Harmonic Trap
We present an {\it ab initio} calculation of small numbers of trapped,
strongly interacting fermions using the Green's Function Monte Carlo method
(GFMC). The ground state energy, density profile and pairing gap are calculated
for particle numbers using the parameter-free "unitary"
interaction. Trial wave functions are taken of the form of correlated pairs in
a harmonic oscillator basis. We find that the lowest energies are obtained with
a minimum explicit pair correlation beyond that needed to exploit the
degeneracy of oscillator states. We find that energies can be well fitted by
the expression where is the
Thomas-Fermi energy of a noninteracting gas in the trap and is a
pairing gap. There is no evidence of a shell correction energy in the
systematics, but the density distributions show pronounced shell effects. We
find the value for the pairing gap. This is smaller
than the value found for the uniform gas at a density corresponding to the
central density of the trapped gas.Comment: 2 figures, 2 table
Finite element implementation of state variable-based viscoplasticity models
The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested
Effect of neurostimulation on cognition and mood in refractory epilepsy.
Epilepsy is a common, debilitating neurological disorder characterized by recurrent seizures. Mood disorders and cognitive deficits are common comorbidities in epilepsy that, like seizures, profoundly influence quality of life and can be difficult to treat. For patients with refractory epilepsy who are not candidates for resection, neurostimulation, the electrical modulation of epileptogenic brain tissue, is an emerging treatment alternative. Several forms of neurostimulation are currently available, and therapy selection hinges on relative efficacy for seizure control and amelioration of neuropsychiatric comorbidities. Here, we review the current evidence for how invasive and noninvasive neurostimulation therapies affect mood and cognition in persons with epilepsy. Invasive therapies include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Noninvasive therapies include trigeminal nerve stimulation (TNS), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Overall, current evidence supports stable cognition and mood with all neurostimulation therapies, although there is some evidence that cognition and mood may improve with invasive forms of neurostimulation. More research is required to optimize the effects of neurostimulation for improvements in cognition and mood
- …