46 research outputs found

    Transfer-free electrical insulation of epitaxial graphene from its metal substrate

    Full text link
    High-quality, large-area epitaxial graphene can be grown on metal surfaces but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a step-wise intercalation of silicon and oxygen, and the eventual formation of a SiO2_2 layer between the graphene and the metal. We follow the reaction steps by x-ray photoemission spectroscopy and demonstrate the electrical insulation using a nano-scale multipoint probe technique.Comment: Accepted for publication in Nano Letter

    Surface Chemistry of Si Epitaxy and Growth Modeling

    No full text

    Precise control of epitaxy of graphene by microfabricating SiC substrate

    No full text
    Epitaxial graphene (EG) on SiC is promising owing to a capability to produce high-quality film on a wafer scale. One of the remaining issues is microscopic thickness variation of EG near surface steps, which induces variations in its electronic properties and device characteristics. We demonstrate here that the variations of layer thickness and electronic properties are minimized by using microfabricated SiC substrates which spatially confines the epitaxy. This technique will contribute to the realization of highly reliable graphene devices
    corecore