5,358 research outputs found

    Physical Sources of Scatter in the Tully-Fisher Relation

    Get PDF
    We analyze residuals from the Tully-Fisher relation for the emission-line galaxies in the Nearby Field Galaxy Survey, a broadly representative survey designed to fairly sample the variety of galaxy morphologies and environments in the local universe. For spirals brighter than M_R^i=-18, we find strong correlations between Tully-Fisher residuals and both B-R color and EW(Halpha). The extremes of the correlations are populated by Sa galaxies, which show consistently red colors, and spirals with morphological peculiarities, which are often blue. If we apply an EW(Halpha)-dependent or B-R color-dependent correction term to the Tully-Fisher relation, the scatter in the relation no longer increases from R to B to U but instead drops to a nearly constant level close to the scatter we expect from measurement errors. We argue that these results probably reflect correlated offsets in luminosity and color as a function of star formation history. Broadening the sample in morphology and luminosity, we find that most non-spirals brighter than M_R^i=-18 follow the same correlations as do spirals, albeit with greater scatter. However, the color and EW(Halpha) correlations do not apply to galaxies fainter than M_R^i=-18 or to emission-line S0 galaxies with anomalous gas kinematics. For the dwarf galaxy population, the parameters controlling Tully-Fisher residuals are instead related to the degree of recent disturbance: overluminous dwarfs have higher rotation curve asymmetries, brighter U-band effective surface brightnesses, and shorter gas consumption timescales than their underluminous counterparts. As a result, sample selection strongly affects the measured faint-end slope of the Tully-Fisher relation. Passively evolving, rotationally supported galaxies display a break toward steeper slope at low luminosities.Comment: 58 pages including 21 figures, AJ, accepte

    Universal conductance fluctuations in epitaxial GaMnAs ferromagnets: structural and spin disorder

    Full text link
    Mesoscopic transport measurements reveal a large effective phase coherence length in epitaxial GaMnAs ferromagnets, contrary to usual 3d-metal ferromagnets. Universal conductance fluctuations of single nanowires are compared for epilayers with a tailored anisotropy. At large magnetic fields, quantum interferences are due to structural disorder only, and an unusual behavior related to hole-induced ferromagnetism is evidenced, for both quantum interferences and decoherence. At small fields, phase coherence is shown to persist down to zero field, even in presence of magnons, and an additional spin disorder contribution to quantum interferences is observed under domain walls nucleation.Comment: 15 pages, 4 figure

    Power couplers for Spiral 2

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/SRF2011/papers/frioa04.pdf Due to its success, we intend to have a PRST-AB SRF2011 special edition.International audienc

    The Anomaly in the Candidate Microlensing Event PA-99-N2

    Get PDF
    The lightcurve of PA-99-N2, one of the recently announced microlensing candidates towards M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect and a binary lens. We find that the observations are consistent with an unresolved RGB or AGB star in M31 being microlensed by a binary lens. We find that the best fit binary lens mass ratio is about one hundredth, which is one of most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 solar masses (95 % confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09-32 solar masses, which is consistent with the primary being a stellar remnant and the secondary a low mass star or brown dwarf. The optical depth (or alternatively the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens provided that dark compact objects comprise no less than 15 per cent (or 5 per cent) of haloes.Comment: Latex, 23 pages, 9 figures, in press at The Astrophysical Journa

    Coherence Window in the dynamics of Quantum Nanomagnets

    Full text link
    Decoherence in many solid-state systems is anomalously high, frustrating efforts to make solid-state qubits. We show that in nanomagnetic insulators in large transverse fields, there can be a fairly narrow field region in which both phonon and nuclear spin-mediated decoherence are drastically reduced. As examples we calculate decoherence rates for the FeFe-8 nanomolecule, for NiNi particles, and for HoHo ions in LiHoxY1−zF4LiHo_xY_{1-z}F_4. The reduction in the decoherence, compared to low field rates, can exceed 6 orders of magnitude. The results also give limitations on the observability of macroscopic coherence effects in magnetic systems.Comment: 5 LaTeX pages, 3 figure

    Diffractive orbits in isospectral billiards

    Full text link
    Isospectral domains are non-isometric regions of space for which the spectra of the Laplace-Beltrami operator coincide. In the two-dimensional Euclidean space, instances of such domains have been given. It has been proved for these examples that the length spectrum, that is the set of the lengths of all periodic trajectories, coincides as well. However there is no one-to-one correspondence between the diffractive trajectories. It will be shown here how the diffractive contributions to the Green functions match nevertheless in a ''one-to-three'' correspondence.Comment: 20 pages, 6 figure

    A compactness theorem for scalar-flat metrics on manifolds with boundary

    Full text link
    Let (M,g) be a compact Riemannian manifold with boundary. This paper is concerned with the set of scalar-flat metrics which are in the conformal class of g and have the boundary as a constant mean curvature hypersurface. We prove that this set is compact for dimensions greater than or equal to 7 under the generic condition that the trace-free 2nd fundamental form of the boundary is nonzero everywhere.Comment: 49 pages. Final version, to appear in Calc. Var. Partial Differential Equation

    Is the tetraneutron a bound dineutron-dineutron molecule?

    Get PDF
    In light of a new experiment which claims a positive identification, we discuss the possible existence of the tetraneutron. We explore a novel model based on a dineutron-dineutron molecule. We show that this model is not able to explain the tetraneutron as a bound state, in agreement with other theoretical models already discussed in the literature.Comment: 9 pages, 3 figures, J. Phys. G, in pres

    Testing QCD factorisation and charming penguins in charmless B→PV{\boldsymbol{B\to PV}}

    Full text link
    We try a global fit of the experimental branching ratios and CP-asymmetries of the charmless B→PVB\to PV decays according to QCD factorisation. We find it impossible to reach a satisfactory agreement, the confidence level (CL) of the best fit is smaller than .1 %. The main reason for this failure is the difficulty to accomodate several large experimental branching ratios of the strange channels. Furthermore, experiment was not able to exclude a large direct CP asymmetry in B0ˉ→ρ+π−\bar {B^0}\to\rho^+ \pi^-, which is predicted very small by QCD factorisation. Trying a fit with QCD factorisation complemented by a charming-penguin inspired model we reach a best fit which is not excluded by experiment (CL of about 8 %) but is not fully convincing. These negative results must be tempered by the remark that some of the experimental data used are recent and might still evolve significantly.Comment: 21 pages, 4 figures; several typos corrected, added one footnote and two references, comments added about PQCD. To appear in Phys.Rev.

    Evidence for Intrinsic Redshifts in Normal Spiral Galaxies

    Full text link
    The Tully-Fisher Relationship (TFR) is utilized to identify anomalous redshifts in normal spiral galaxies. Three redshift anomalies are identified in this analysis: (1) Several clusters of galaxies are examined in which late type spirals have significant excess redshifts relative to early type spirals in the same clusters, (2) Galaxies of morphology similar to ScI galaxies are found to have a systematic excess redshift relative to the redshifts expected if the Hubble Constant is 72 km s-1 Mpc-1, (3) individual galaxies, pairs, and groups are identified which strongly deviate from the predictions of a smooth Hubble flow. These redshift deviations are significantly larger than can be explained by peculiar motions and TFR errors. It is concluded that the redshift anomalies identified in this analysis are consistent with previous claims for large non-cosmological (intrinsic) redshifts.Comment: Accepted for publication at Astrophysics&Space Science. 36 pages including 8 tables and 7 figure
    • 

    corecore