27,058 research outputs found
Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant
We compute the dimensionality dependence of for charged black branes
with Gauss-Bonnet correction. We find that both causality and stability
constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in
the infinite dimensionality limit. We further show that higher dimensionality
stabilize the gravitational perturbation. The stabilization of the perturbation
in higher dimensional space-time is a straightforward consequence of the
Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio
Hierarchic Superposition Revisited
Many applications of automated deduction require reasoning in first-order
logic modulo background theories, in particular some form of integer
arithmetic. A major unsolved research challenge is to design theorem provers
that are "reasonably complete" even in the presence of free function symbols
ranging into a background theory sort. The hierarchic superposition calculus of
Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we
demonstrate, not optimally. This paper aims to rectify the situation by
introducing a novel form of clause abstraction, a core component in the
hierarchic superposition calculus for transforming clauses into a form needed
for internal operation. We argue for the benefits of the resulting calculus and
provide two new completeness results: one for the fragment where all
background-sorted terms are ground and another one for a special case of linear
(integer or rational) arithmetic as a background theory
Robust Online Monitoring of Signal Temporal Logic
Signal Temporal Logic (STL) is a formalism used to rigorously specify
requirements of cyberphysical systems (CPS), i.e., systems mixing digital or
discrete components in interaction with a continuous environment or analog com-
ponents. STL is naturally equipped with a quantitative semantics which can be
used for various purposes: from assessing the robustness of a specification to
guiding searches over the input and parameter space with the goal of falsifying
the given property over system behaviors. Algorithms have been proposed and
implemented for offline computation of such quantitative semantics, but only
few methods exist for an online setting, where one would want to monitor the
satisfaction of a formula during simulation. In this paper, we formalize a
semantics for robust online monitoring of partial traces, i.e., traces for
which there might not be enough data to decide the Boolean satisfaction (and to
compute its quantitative counterpart). We propose an efficient algorithm to
compute it and demonstrate its usage on two large scale real-world case studies
coming from the automotive domain and from CPS education in a Massively Open
Online Course (MOOC) setting. We show that savings in computationally expensive
simulations far outweigh any overheads incurred by an online approach
Quantum Algebras Associated With Bell States
The antisymmetric solution of the braided Yang--Baxter equation called the
Bell matrix becomes interesting in quantum information theory because it can
generate all Bell states from product states. In this paper, we study the
quantum algebra through the FRT construction of the Bell matrix. In its four
dimensional representations via the coproduct of its two dimensional
representations, we find algebraic structures including a composition series
and a direct sum of its two dimensional representations to characterize this
quantum algebra. We also present the quantum algebra using the FRT construction
of Yang--Baxterization of the Bell matrix.Comment: v1: 15 pages, 2 figures, latex; v2: 18 pages, 2 figures, latex,
references and notes adde
Technique of quantum state transfer for a double Lambda atomic beam
The transfer technique of quantum states from light to collective atomic
excitations in a double type system is extended to matter waves in
this paper, as a novel scheme towards making a continuous atom laser. The
intensity of the output matter waves is found to be determined by the initial
relative phase of the two independent coherent probe lights, which may indicate
an interesting method for the measurement of initial relative phase of two
independent light sources.Comment: 5 pages, 2 figure
Circulating complexes of the vitamin D binding protein with G-actin induce lung inflammation by targeting endothelial cells
This study investigated the actin scavenger function of the vitamin D binding protein (DBP) in vivo using DBP null (-/-) mice. Intravenous injection of G-actin into wild-type (DBP+/+) and DBP-/- mice showed that contrary to expectations, DBP+/+ mice developed more severe acute lung inflammation. Inflammation was restricted to the lung and pathological changes were clearly evident at 1.5 and 4 h post-injection but were largely resolved by 24 h. Histology of DBP+/+ lungs revealed noticeably more vascular leakage, hemorrhage and thickening of the alveolar wall. Flow cytometry analysis of whole lung homogenates showed significantly increased neutrophil infiltration into DBP+/+ mouse lungs at 1.5 and 4h. Increased amounts of protein and leukocytes were also noted in bronchoalveolar lavage fluid from DBP+/+. mice 4 h after actin injection. In vitro, purified DBP-actin complexes did not activate complement or neutrophils but induced injury and death of cultured human lung microvascular endothelial cells (HLMVEC) and human umbilical vein endothelial cells (HUVEC). Cells treated with DBP-actin showed a significant reduction in viability at 4 h, this effect was reversible if cells were cultured in fresh media for another 24 h. However, a 24-h treatment with DBP-actin complexes showed a significant increase in cell death (95% for HLMVEC, 45% for HUVEC). The mechanism of endothelial cell death was via both caspase-3 dependent (HUVEC) and independent (HLMVEC) pathways. These results demonstrate that elevated levels and/or prolonged exposure to DBP-actin complexes may induce endothelial cell injury and death, particularly in the lung microvasculature. (C) 2013 Elsevier GmbH. All rights reserved
Imaging the Effects of Oxygen Saturation Changes in Voluntary Apnea and Hyperventilation on Susceptibility-Weighted Imaging
BACKGROUND AND PURPOSE: Cerebrovascular oxygenation changes during respiratory challenges have clinically important implications for brain function, including cerebral autoregulation and the rate of brain metabolism. SWI is sensitive to venous oxygenation level by exploitation of the magnetic susceptibility of deoxygenated blood. We assessed cerebral venous blood oxygenation changes during simple voluntary breath-holding (apnea) and hyperventilation by use of SWI at 3T.
MATERIALS AND METHODS: We performed SWI scans (3T; acquisition time of 1 minute, 28 seconds; centered on the anterior commissure and the posterior commissure) on 10 healthy male volunteers during baseline breathing as well as during simple voluntary hyperventilation and apnea challenges. The hyperventilation and apnea tasks were separated by a 5-minute resting period. SWI venograms were generated, and the signal changes on SWI before and after the respiratory stress tasks were compared by means of a paired Student t test.
RESULTS: Changes in venous vasculature visibility caused by the respiratory challenges were directly visualized on the SWI venograms. The venogram segmentation results showed that voluntary apnea decreased the mean venous blood voxel number by 1.6% (P < .0001), and hyperventilation increased the mean venous blood voxel number by 2.7% (P < .0001). These results can be explained by blood CO2 changes secondary to the respiratory challenges, which can alter cerebrovascular tone and cerebral blood flow and ultimately affect venous oxygen levels.
CONCLUSIONS: These results highlight the sensitivity of SWI to simple and noninvasive respiratory challenges and its potential utility in assessing cerebral hemodynamics and vasomotor responses
Basic tasks of sentiment analysis
Subjectivity detection is the task of identifying objective and subjective
sentences. Objective sentences are those which do not exhibit any sentiment.
So, it is desired for a sentiment analysis engine to find and separate the
objective sentences for further analysis, e.g., polarity detection. In
subjective sentences, opinions can often be expressed on one or multiple
topics. Aspect extraction is a subtask of sentiment analysis that consists in
identifying opinion targets in opinionated text, i.e., in detecting the
specific aspects of a product or service the opinion holder is either praising
or complaining about
An equatorial ultra iron-poor star identified in BOSS
We report the discovery of SDSS J131326.89-001941.4, an ultra iron-poor red
giant star ([Fe/H] ~ -4.3) with a very high carbon abundance ([C/Fe]~ +2.5).
This object is the fifth star in this rare class, and the combination of a
fairly low effective temperature (Teff ~ 5300 K), which enhances line
absorption, with its brightness (g=16.9), makes it possible to measure the
abundances of calcium, carbon and iron using a low-resolution spectrum from the
Sloan Digital Sky Survey. We examine the carbon and iron abundance ratios in
this star and other similar objects in the light of predicted yields from
metal-free massive stars, and conclude that they are consistent. By way of
comparison, stars with similarly low iron abundances but lower carbon-to-iron
ratios deviate from the theoretical predictions.Comment: 6 pages, 4 figures, accepted for publication in A&
- …