841 research outputs found

    Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins

    Get PDF
    Polymer brushes are widely used to prevent the adsorption of proteins, but the mechanisms by which they operate have remained heavily debated for many decades. We show conclusive evidence that a polymer brush can be a remarkably strong kinetic barrier towards proteins by using poly(ethylene glycol) grafted to the sidewalls of pores in 30 nm thin gold films. Despite consisting of about 90% water, the free coils seal apertures up to 100 nm entirely with respect to serum protein translocation, as monitored label-free through the plasmonic activity of the nanopores. The conclusions are further supported by atomic force microscopy and fluorescence microscopy. A theoretical model indicates that the brush undergoes a morphology transition to a sealing state when the ratio between the extension and the radius of curvature is approximately 0.8. The brush-sealed pores represent a new type of ultrathin filter with potential applications in bioanalytical systems

    Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates

    Get PDF
    The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL−1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events

    Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition

    Get PDF
    Control of molecular translocation through nanoscale apertures is of great interest for DNA sequencing, biomolecular filters, and new platforms for single molecule analysis. However, methods for controlling the permeability of nanopores are very limited. Here, we show how nanopores functionalized with poly(ethylene glycol) brushes, which fully prevent protein translocation, can be reversibly gated to an "open" state by binding of single IgG antibodies that disrupt the macromolecular barrier. On the basis of surface plasmon resonance data we propose a two-state model describing the antibody-polymer interaction kinetics. Reversibly (weakly) bound antibodies decrease the protein exclusion height while irreversibly (strongly) bound antibodies do not. Our results are further supported by fluorescence readout from pore arrays and high-speed atomic force microscopy on single pores. This type of dynamic barrier control on the nanoscale provides new possibilities for biomolecular separation and analysis

    A Comparative Plasmonic Study of Nanoporous and Evaporated Gold Films

    Get PDF
    Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4–8.5 times more accessible surface area than EG films. Assemblies of streptavidin–latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time

    NQO2 is a reactive oxygen species generating off-target for acetaminophen

    Get PDF
    [Image: see text] The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity

    An integrative multi-platform analysis for discovering biomarkers of osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SELDI-TOF-MS (Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry) has become an attractive approach for cancer biomarker discovery due to its ability to resolve low mass proteins and high-throughput capability. However, the analytes from mass spectrometry are described only by their mass-to-charge ratio (<it>m</it>/<it>z</it>) values without further identification and annotation. To discover potential biomarkers for early diagnosis of osteosarcoma, we designed an integrative workflow combining data sets from both SELDI-TOF-MS and gene microarray analysis.</p> <p>Methods</p> <p>After extracting the information for potential biomarkers from SELDI data and microarray analysis, their associations were further inferred by link-test to identify biomarkers that could likely be used for diagnosis. Immuno-blot analysis was then performed to examine whether the expression of the putative biomarkers were indeed altered in serum from patients with osteosarcoma.</p> <p>Results</p> <p>Six differentially expressed protein peaks with strong statistical significances were detected by SELDI-TOF-MS. Four of the proteins were up-regulated and two of them were down-regulated. Microarray analysis showed that, compared with an osteoblastic cell line, the expression of 653 genes was changed more than 2 folds in three osteosarcoma cell lines. While expression of 310 genes was increased, expression of the other 343 genes was decreased. The two sets of biomarkers candidates were combined by the link-test statistics, indicating that 13 genes were potential biomarkers for early diagnosis of osteosarcoma. Among these genes, cytochrome c1 (CYC-1) was selected for further experimental validation.</p> <p>Conclusion</p> <p>Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis can accelerate the identification of tumor biomarkers. The result confirmed that CYC-1 may be a promising biomarker for early diagnosis of osteosarcoma.</p

    Liposomi rivastigmina za isporuku u mozak intranazalnim putem

    Get PDF
    The present study is mainly aimed at delivering a drug into the brain via the intranasal route using a liposomal formulation. For this purpose, rivastigmine, which is used in the management of Alzheimer’s disease, was selectd as a model drug. Conventional liposomes were formulated by lipid layer hydration method using cholesterol and soya lecithin as lipid components. The concentration of rivastigmine in brain and plasma was studied in rat models after intranasal and oral administration of liposomes and free drug. A significantly higher level of drug was found in the brain with intranasal liposomes of rivastigmine compared to the intranasal free drug and the oral route. Intranasal liposomes had a longer half-life in the brain than intranasally or orally administered free drug. Delivering rivastigmine liposomes through the intranasal route for the treatment of Alzheimer’s disease might be a new approach to the management of this condition.Glavni cilj rada je razvoj liposoma za intranazalnu primjenu za isporuku lijeka u mozak. U tu svrhu izabran je rivastigmin kao modelni lijek koji se upotrebljava u terapiji Alzheimerove bolesti. Liposomi su pripravljeni metodom hidratacije lipidnog sloja koristeći kolesterol i lecitin iz soje kao lipidne komponente. Praćena je koncentracija rivastigmina u mozgu i plazmi nakon intranazalne i peroralne primjene liposoma i slobodnog lijeka. S intranazalnim liposomima rivastigmina postignuta je značajno veća koncentracija lijeka u mozgu. Osim toga intranazalni liposomi imaju dulje vrijeme poluživota u mozgu. Intranazalna primjena liposoma rivastigmina mogla bi predstavljati novi pristup terapiji Alzheimerove bolesti
    corecore