302,438 research outputs found
Human environmental heat transfer simulation with CFD – the advances and challenges
The modelling and prediction of human thermoregulatory responses and comfort have gone a long way during the past decades. Sophisticated and detailed human models, i.e. the active multi-nodal thermal models with physiological regulatory responses, have been developed and widely adopted
in both research and industrial practice. The recent trend is to integrate human models with environmental models in order to provide more insight into the thermal comfort issues, especially in the non-homogeneous and transient conditions. This paper reviews the logics and expectations of coupling human models with computational fluid dynamics
(CFD) models. One of main objectives of such approaches is to take the advantage of the high resolution achievable with the CFD, to replace the empirical methods used in the human models. We aim to initiate debates on the validity of this objective, and to identify the technical requirements
for achieving this goal. A simple experiment with 3D human models of different sizes and shapes is also reported. Initial results shows the presence of arms may be important. Further experiments are required to establish the impact of size and shape on simulation result
Recommended from our members
Optimal funding and investment strategies in defined contribution pension plans under Epstein-Zin utility
A defined contribution pension plan allows consumption to be redistributed from the plan member’s working life to retirement in a manner that is consistent with the member’s personal preferences. The plan’s optimal funding and investment strategies therefore depend on the desired pattern of consumption over the lifetime of the member.
We investigate these strategies under the assumption that the member has an Epstein-Zin utility function, which allows a separation between risk aversion and the elasticity of intertemporal substitution, and we also take into account the member’s human capital.
We show that a stochastic lifestyling approach, with an initial high weight in equity-type investments and a gradual switch into bond-type investments as the retirement date approaches is an optimal investment strategy. In addition, the optimal contribution rate each year is not constant over the life of the plan but reflects trade-offs between the desire for current consumption, bequest and retirement savings motives at different stages in the life cycle, changes in human capital over the life cycle, and attitude to risk
Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts
A correlation between the peak luminosity and the peak energy has been found
by Yonetoku et al. as for 11 pre-Swift long
gamma-ray bursts. In this study, for a greatly expanded sample of 148 long
gamma-ray bursts in the Swift era, we find that the correlation still exists,
but most likely with a slightly different power-law index, i.e., . In addition, we have collected 17 short gamma-ray bursts with
necessary data. It is found that the correlation of also exists for this sample of short events. It is argued that the
radiation mechanism of both long and short gamma-ray bursts should be similar,
i.e., of quasi-thermal origin caused by the photosphere and the dissipation
occurring very near the central engine. Some key parameters of the process are
constrained. Our results suggest that the radiation process of both long and
short bursts may be dominated by thermal emission, rather than the single
synchrotron radiation. This might put strong physical constraints on the
theoretical models.Comment: 22 pages, 5 figures and 1 table, Accepted for publication in Ap
Interacting Individuals Leading to Zipf's Law
We present a general approach to explain the Zipf's law of city distribution.
If the simplest interaction (pairwise) is assumed, individuals tend to form
cities in agreement with the well-known statisticsComment: 4 pages 2 figure
Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520
In this paper, we address the formation of a magnetic flux rope (MFR) that
erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15.
Through analyzing the long-term evolution of the associated active region
observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic
Imager on board the Solar Dynamics Observatory, it is found that the twisted
field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from
two groups of sheared arcades near the main polarity inversion line half day
before the eruption. The temperature within the twisted field and sheared
arcades is higher than that of the ambient volume, suggesting that magnetic
reconnection most likely works there. The driver behind the reconnection is
attributed to shearing and converging motions at magnetic footpoints with
velocities in the range of 0.1--0.6 km s. The rotation of the preceding
sunspot also contributes to the MFR buildup. Extrapolated three-dimensional
non-linear force-free field structures further reveal the locations of the
reconnection to be in a bald-patch region and in a hyperbolic flux tube. About
two hours before the eruption, indications for a second MFR in the form of an
S-shaped hot channel are seen. It lies above the original MFR that continuously
exists and includes a filament. The whole structure thus makes up a stable
double-decker MFR system for hours prior to the eruption. Eventually, after
entering the domain of instability, the high-lying MFR impulsively erupts to
generate a fast coronal mass ejection and X-class flare; while the low-lying
MFR remains behind and continuously maintains the sigmoidicity of the active
region.Comment: accepted for publication in ApJ. 12 pages, 9 figures, and 1 table.
ISEST defines this eruption as a textbook event, please see the website
http://solar.gmu.edu/heliophysics/index.php for associated magnetic cloud
analysi
Exploring Quantum Phase Transitions with a Novel Sublattice Entanglement Scenario
We introduce a new measure called reduced entropy of sublattice to quantify
entanglement in spin, electron and boson systems. By analyzing this quantity,
we reveal an intriguing connection between quantum entanglement and quantum
phase transitions in various strongly correlated systems: the local extremes of
reduced entropy and its first derivative as functions of the coupling constant
coincide respectively with the first and second order transition points. Exact
numerical studies merely for small lattices reproduce several well-known
results, demonstrating that our scenario is quite promising for exploring
quantum phase transitions.Comment: 4 pages, 4 figure
- …
