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Abstract 

 
A defined contribution pension plan allows consumption to be redistributed from the plan 

member’s working life to retirement in a manner that is consistent with the member’s personal 

preferences. The plan’s optimal funding and investment strategies therefore depend on the 

desired pattern of consumption over the lifetime of the member. 

 

We investigate these strategies under the assumption that the member has an Epstein-Zin utility 

function, which allows a separation between risk aversion and the elasticity of intertemporal 

substitution, and we also take into account the member’s human capital. 

 

We show that a stochastic lifestyling approach, with an initial high weight in equity-type 

investments and a gradual switch into bond-type investments as the retirement date approaches 

is an optimal investment strategy. In addition, the optimal contribution rate each year is not 

constant over the life of the plan but reflects trade-offs between the desire for current 

consumption, bequest and retirement savings motives at different stages in the life cycle, 

changes in human capital over the life cycle, and attitude to risk. 
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Optimal Funding and Investment Strategies in Defined 

Contribution Pension Plans under Epstein-Zin Utility 

 

 

1  Introduction 

1.1 The role of the pension plan in allocating consumption across the 

life cycle 

A typical individual’s life cycle consists of a period of work followed by a period of 

retirement.  Individuals therefore need to reallocate consumption from their working life 

– when the lifetime’s income is earned – to retirement – when there might be no other 

resources available, except possibly a subsistence level of support from the state. A 

defined contribution (DC) pension plan can achieve this reallocation in a way that is 

consistent with the preferences of the individual plan member. There are three key 

preferences to take into account.  

 

The first relates to the desire to smooth consumption across different states of the nature 

in any given time period. The second relates to the desire to smooth consumption across 

different time periods. Saving for retirement involves the sacrifice of certain consumption 

today in exchange for, generally, uncertain consumption in the future. This uncertainty 

arises because both future labour income and the returns on the assets in which retirement 

savings are invested are uncertain. The plan member therefore needs to form a view on 

both the trade-off between consumption in different states of nature in the same time 

period and the trade-off between consumption in different time periods. Attitudes to these 

trade-offs will influence the optimal funding and investment strategies of the pension 

plan.  

 

In a DC pension plan, the member allocates part of the labour income earned each year to 

the pension plan in the form of a contribution and, thus, builds up a pension fund prior to 

retirement. Then, on retirement, the member uses a proportion of the accumulated 

pension fund to purchase a life annuity. The decisions regarding the contribution rate 
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each year before retirement (i.e., the funding strategy) and the annuitisation ratio (i.e., the 

proportion of the fund at retirement that is used to purchase a life annuity) are both driven 

by the member’s preference between current and future consumption, as well as the 

desire to leave a bequest, the third key preference that we need to take into account. 

Should the member die before retirement, the entire accumulated pension fund will be 

available to bequest; after retirement, only that part of the residual pension fund that has 

not been either annuitised or spent can be bequested.    

 

The investment strategy (i.e., the decision about how to invest the accumulated fund 

across the major asset categories, such as equities and bonds) will influence the volatility 

of the pension fund and, hence, consumption in different time periods, and so will be 

influenced by the member’s attitude to that volatility.  

 

In this paper, we investigate the optimal funding and investment strategies in a DC 

pension plan.
1
 To do this, we use a model that differs radically from existing studies in 

this field in three key respects. 

 

The first key feature of the model is the assumption of Epstein-Zin recursive preferences 

by the plan member. This enables us to separate relative risk aversion (RRA) and the 

elasticity of intertemporal substitution (EIS). Risk aversion is related to the desire to 

stabilise consumption across different states of nature in a given time period (e.g., an 

individual with a high degree of risk aversion wishes to avoid consumption uncertainty in 

that period, and, in particular, a reduction in consumption in an unfavourable state of 

nature) and the EIS measures the desire to smooth consumption over time (e.g., an 

individual with a low EIS wishes to avoid consumption volatility over time, and, in 

particular, a reduction in consumption relative to the previous time period).
2
  Thus, risk 

                                                 
1 This research focuses on the investment and funding strategies for a DC plan during the accumulation 

stage and the only form of saving we allow is pension saving. Non-pension saving, housing-related 

investments and post-retirement investment strategies are beyond the scope of this study.  
 
2 The EIS is defined as 



 4

aversion and EIS are conceptually distinct and, ideally, should be parameterised 

separately. In this paper, we consider four different types of member according to 

different RRA and EIS combinations, as shown in Table 1.1.  

 

 

Table 1.1 Pension plan member types 

 High RRA (risk averse) Low RRA (risk tolerant) 

Low EIS 
(likes 
consumption 
smoothing) 

 
● risk-averse member 

who dislikes 
consumption volatility 
over time 

● low equity allocation, 
particularly as 
retirement approaches 

● e.g., low income 
member with 
dependants 

 

 
● risk-tolerant member 

who dislikes 
consumption volatility 
over time 

● high equity allocation at 
all ages 

● e.g., low income 
member without 
dependants 

 

High EIS 
(accepts 
consumption 
volatility) 

 
● risk-averse member 

who does not mind 
consumption volatility 
over time 

● low equity allocation, 
particularly as 
retirement approaches 

● e.g., high income 
member with 
dependants 

 

 
● risk-tolerant member 

who does not mind 
consumption volatility 
over time 

● high equity allocation at 
all ages 

● e.g., high income 
member without 
dependants 
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where 1tc   is consumption in period t1 and ( )1tU c′   is the marginal utility of 1tc , etc. The sign and size of 

the EIS reflects the relationship between the substitution effect and income effect of a shock to a state variable, such 

as an increase in the risk-free interest rate. The substitution effect is always negative, since current consumption 

decreases when the risk-free rate increases because future consumption becomes relatively cheap and this encourages 

an increase in savings. The income effect will be positive if an increase in the risk-free rate (which induces an increase 

in wealth) leads to an increase in current consumption; it will be negative otherwise. If the income effect dominates, the 

EIS will be negative and an increase in the risk-free rate leads to an increase in current consumption. If the substitution 

effect dominates (which is the usual assumption), the EIS will be positive and an increase in the risk-free rate leads to a 

decrease in current consumption. If the income and substitution effects are of equal and opposite sign, the EIS will be 

zero and current consumption will not change in response to an increase in the risk-free rate: in other words, 

consumption will be smooth over time in response to interest rate volatility. 
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Within the commonly used power utility framework, the coefficient of relative risk 

aversion (RRA) is the reciprocal of EIS (see, for example, Campbell and Viceira (2002)). 

This restriction has been criticised because it does not reflect empirical observations. For 

example, based on the consumption capital asset pricing model,
3
 Schwartz and Torous 

(1999) disentangle these two concepts using the term structure of asset returns. Using US 

data, their best estimate for RRA is 5.65 (with a standard error of 0.22) and their best 

estimate of the IES is 0.226 (with a standard error of 0.008). Thus, a high RRA is 

associated with a low level of EIS, but the estimated parameter values do not have the 

reciprocal relationship assumed by power utility. Blackburn (2006) also rejects the 

reciprocal relationship on the basis of a time series of RRA and EIS parameters estimated 

from observed S&P 500 option prices for a range of different expiry dates between 1996 

and 2003.
4
 

 

The second key feature of the model is the recognition that the optimal investment 

strategy will depend not just on the properties of the available financial assets, but also on 

the plan member’s human capital.  A commonly used investment strategy in DC pension 

plans is “deterministic lifestyling”. With this strategy, the pension fund is invested 

entirely in high risk assets, such as equities, when the member is young. Then, at some 

arbitrary date prior to retirement (e.g., 10 years), the assets are switched gradually (and 

usually linearly) into lower risk assets such as bonds and cash. However, there has been 

no strong empirical evidence to date demonstrating that this is an optimal strategy.  

 

If equity returns are assumed to be mean reverting over time, then the lifestyle strategy of 

holding the entire fund in equities for an extended period prior to retirement may be 

justified, as the volatility of equity returns can be expected to decay over time (as a result 

of the effect of “time diversification”). However, there is mixed empirical evidence about 

whether equity returns are genuinely mean reverting: Blake (1996), Lo and Mackinley 

(1988) and  Poterba and Summers (1988) find supporting evidence for the UK and US, 

                                                 
3   Breeden’s 1979 extension of the traditional CAPM which estimates future asset prices based on aggregate 

consumption rather than the return on the market portfolio. 
4  In particular, Blackburn (2006) found that, over the period 1996 to 2003, the level of risk aversion changed 

dramatically whilst the level of elasticity of intertemporal substitution stayed reasonably constant.   
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while Howie and Davies (2002) and Kim et al (1991) find little support for the 

proposition in the same countries. We would therefore not wish an optimal investment 

strategy to rely on the assumption of mean reversion holding true in practice. 

 

A more appropriate justification for a lifestyle investment strategy comes from 

recognising the importance of human capital in individual financial planning. Human 

capital (i.e., the net present value of an individual’s future labour income) can be 

interpreted as a bond-like asset in which future labour income is the “dividend” on the 

individual’s implicit holding of human capital. Young pension plan members therefore 

implicitly have a significant holding of bond-like assets and, thus, should weight the 

financial element of their overall portfolio towards equity-type assets.
5
 But to date, there 

has been no quantitative research exploring the human capital dimension in a DC pension 

framework. 

 

This paper presents an intertemporal model to solve the life-cycle asset allocation 

problem for a DC pension plan member. The model assumes two assets (a risky equity 

fund and a risk-free cash fund), a constant investment opportunity set (i.e., a constant 

return on the risk-free asset, and a constant expected return and volatility on the risky 

asset) and stochastic labour income. We consider two aspects of labour income risk: the 

volatility of labour income and the correlation between labour income and equity returns 

which determines the extent to which labour income affects portfolio choice (e.g., a 

positive correlation reduces the optimal asset allocation to equities). 

 

The third key feature of the model concerns the annuitisation decision at retirement. A 

member with a strong “bequest” savings motive will not wish to annuitise all the 

accumulated pension wealth. In our model, the member chooses to annuitise a proportion 

of the accumulated pension fund at retirement by buying a life annuity which will 

generate a return linked to bonds. We denote this proportion the “annuitisation ratio”. 

This ratio is chosen to maximise the expected utility level at retirement when annuity 

                                                 
5  Note this argument might not be appropriate for more entrepreneurial individuals whose pattern of future labour 

income growth corresponds more to equity than to bonds. 
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income replaces labour income. The member invests the residual wealth that is not 

annuitised in higher returning assets in line with the RRA. The member can draw an 

income from the residual wealth to enhance consumption in retirement, but, unlike the 

life annuity, the residual wealth can be bequested when the individual dies.  

 

Before considering the model in more detail, we will review Epstein-Zin utility. 

 

 

1.2  Epstein-Zin utility  

The classical dynamic asset allocation optimisation model was introduced by Merton 

(1969, 1971), and shows how to construct and analyse optimal dynamic models under 

uncertainty. Ignoring labour income, in a single risky asset and constant investment 

opportunity setting, the optimal portfolio weight in the risky asset for an investor with a 

power utility function ( ) ( )
1

( ) 1U W W
−

= −
γ

γ  (where W  is wealth and γ  is the 

coefficient of relative risk aversion) is given by: 

2

µ
α

γσ
=                                                              [1] 

 

where µ and 2
σ  are the excess return on the risky asset and the variance of the return on 

the risky asset, respectively. The investment opportunity set is assumed to be constant. 

 

Equation [1] is appropriate for a single-period myopic investor, rather than a long-term 

investor such as a pension plan member. Instead of focusing on the level of wealth itself, 

long-term investors focus on the consumption stream that can be financed by a given 

level of wealth. As described by Campbell and Viceira (2002, p37), “they consume out of 

wealth and derive utility from consumption rather than wealth”. Consequently, current 

saving and investment decisions are driven by preferences between current and future 

consumption. 
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To account for this, Epstein and Zin (1989) proposed the following discrete-time 

recursive utility function,
6
 which has become a standard tool in intertemporal investment 

models, but has not hitherto been applied to pension plans: 

( ) ( )

1
1 1

1 1
1

1
1 1

11

ϕ ϕ
γϕ γβ β

− −
−

− −
+

 
  = − +  
 
 

t t t tV C E V                                   [2] 

where 

• tV  is the utility level at time t , 

• β  is the individual’s personal discount factor for each year, 

• tC  is the consumption level at time t , 

• γ  is the coefficient of relative risk aversion (RRA), and 

• ϕ  is the elasticity of intertemporal substitution (EIS). 

 

The recursive preference structure in [2] is helpful in two ways: first, it allows a multi-

period decision problem to be reduced to a series of one-period problems (from time t  to 

time 1+t ); and second, as mentioned previously, it enables us to separate RRA and EIS.  

 

Ignoring labour income, for an investor with Epstein-Zin utility, there is an analytical 

solution7 for the optimal portfolio weight in the risky asset given by: 

( )1 1

2 2

cov ,1
1

µ
α

γσ γ σ
+ +− 

= + − × 
 

t t tt
t

t t

R V
                                     [3] 

 

This shows that the demand for the risky asset is based on the weighted average of two 

components. The first component is the short-term demand for the risky asset (or myopic 

demand, in the sense that the investor is focused on wealth in the next period). The 

second component is the intertemporal hedging demand, which is determined by the 

                                                 
6 Recursive utility preferences focus on the trade-off between current-period utility and the utility to be derived from all 

future periods. Kreps and Porteus (1978) first developed a generalised iso-elastic utility function which distinguishes 

attitudes to risk from behaviour toward intertemporal substitution. Following the KP utility function, Epstein and Zin 

(1989, 1991) proposed a discrete-time recursive utility function that allows the separation of the risk aversion 

parameter from the EIS parameter. Duffie and Epstein (1992) then extended the Epstein-Zin discrete recursive utility in 

a continuous-time form called a stochastic differential utility (SDU) function.  
7 For more details, see Merton (1973) and Campbell and Viceira (2002). 
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covariance of the risky asset return with the investor’s utility per unit of wealth over time. 

Thus, ignoring labour income, the optimal portfolio weights are constant over time, 

provided that the investment opportunity set remains constant over time (i.e., t =µ µ  and 

2 2

t =σ σ  in [3]). 

 

In a realistic life-cycle saving and investment model, however, labour income cannot be 

ignored. It is risky and cannot be capitalised and traded. But, allowing for labour income 

volatility in the optimisation process means that an analytical solution for the optimal 

asset allocation cannot be obtained. To address this, the recent literature has employed a 

number of numerical methods
8
 to approximate the solution of the dynamic portfolio 

optimisation problem. 

 

In the presence of income risk, the optimal portfolio weight in the risky asset is not 

constant, but instead follows a lifestyle strategy, as shown by Coco et al. (2005). This can 

be explained as follows: human capital or wealth can be thought of as the expected net 

present value (NPV) of future labour income. Thus, an individual’s labour income can be 

seen as the dividend on the individual’s implicit holding of human capital. The ratio of 

human to financial wealth9 is a crucial determinant of the life-cycle portfolio composition. 

In early life, as shown in Figure 1.1, this ratio is large since the individual has had little 

time to accumulate financial wealth and expects to receive labour income for many years. 

Given that long-term average labour income growth is of a similar order of magnitude as 

average long-run interest rates in the UK over the last century, as explained in Cairns et 

al. (2006), labour income can be thought of as an implicit substitute to investing in the 

                                                 
8 By far, the most popular approach is value function iteration. Specifically, this involves the discretisation of the state 

variables by setting up a standard equally-spaced grid and solves the optimisation for each grid point at the next-to-last 

time period. The expectation term in the resulting Bellman equation is approximated by using quadrature integration 

and then the dynamic optimisation problem can be solved by backward recursion. It is possible that the accumulated 

state variable values from the previous time period are not represented by a grid point, in which case, an interpolation 

method (e.g., bilinear, cubic spline, etc.) must be employed to approximate the value function. However, this approach 

requires knowledge of the distribution of each of the shocks to the process, so that appropriate quadrature integration 

(e.g., Gauss quadrature) can be used. Furthermore, this approach cannot handle a large number of state variables. To 

overcome these limitations, Brandt et al. (2005) proposed a simulation method based on the recursive use of 

approximated optimal portfolio weights. The idea is to estimate asset return moments using a large number of 

simulated sample paths, and then to approximate the value function using a Taylor series expansion. If the return is 

path-dependent, it is necessary to regress the return variable on the simulated state variables from previous time period, 

before using the Taylor expansion with conditional return moments.  
9 In our model, the only source of financial wealth is pension wealth, and we use these terms interchangeably. 
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risk-free asset. Thus, younger individuals have a significant holding in this non-tradable 

risk-free asset and, therefore, should allocate most of their financial wealth to the risky 

asset to keep the overall portfolio composition constant, as suggested by Equation [3] 

above. As they grow older, individuals accumulate more financial wealth and draw down 

human capital.
10

 They should therefore rebalance their financial portfolio towards risk-

free assets as age increases.  

 

 

Figure 1.1 – Decomposition of total wealth over the life cycle 

 

 

More recently, life-cycle asset allocation models with a stochastic labour income process 

have been extended to include the use of a recursive utility function to allow a separation 

of  RRA and EIS by, for instance, Weil (1989) and Campbell and Viceira (2002). By 

including a fixed first-time risky-asset entry cost and adopting Epstein-Zin utility, Gomes 

and Michaelides (2005) present a life-cycle asset allocation model to explain the 

                                                 
10 In our model, the value of human capital will be zero at the end of age 65. The salary is assumed to be paid at the 

start of the year, so the human capital at 65 in Figure 1.1 is equal to the individual’s final salary.  
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empirical observations of low stock market participation and moderate equity holdings 

for participants
11

.  

 

Turning to DC pension plans, most of the existing literature investigates their optimal 

dynamic asset allocation strategy by assuming a fixed contribution rate (e.g., 10% of 

salary per annum prior to retirement) and maximising the utility of the replacement ratio 

(i.e., pension as a proportion of final salary) at retirement (for example, Cairns et al. 

(2006)) or by minimising the expected present value of total disutility 12  prior to 

retirement (for example, Haberman and Vigna (2002)). The EIS is implicitly assumed to 

be zero and there is no facility for adjusting the contribution rate in response to changes 

in salary level or in asset performance. However, in practice, most DC plans allow 

members to make additional voluntary contributions, and often set upper and lower limits 

on the contribution rate per annum. 

 

Our aim in this study is to investigate the optimal asset allocation strategy for a DC plan 

member with Epstein-Zin utility, so that an individual member’s investment strategy 

depends on the pattern of preferred consumption levels over the member’s entire lifetime. 

We also derive the optimal profile of contribution rates over the accumulation stage of a 

DC plan. The rest of the paper is structured as follows. Section 2 outlines the discrete-

time model with Epstein-Zin utility, including the parameter calibration process and 

optimisation method used. In Section 3, we generate simulations of the two key state 

variables (i.e., wealth and labour income) and derive the optimal funding and investment 

strategies for the DC pension plan; we also conduct a sensitivity analysis of the results. 

Section 4 concludes. 

 

 

 

 

                                                 
11 Gomes and Michaelides (2005, page 871) argue that the less risk-averse investors have a weaker incentive to pay the 

fixed entry cost of equity investment, and therefore stock market participants in aggregate tend to be more risk averse. 

 
12 The disutility is normally defined using the deviation of actual fund level from interim and final target fund levels.  
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2 The model 

 

2.1 The model structure and optimisation problem 

We propose a two-asset discrete-time model with a constant investment opportunity set. 

To ensure conformity with a DC pension plan, a number of constraints need to be 

specified: 

(i) pension wealth can never be negative, 

(ii) in any year prior to retirement, consumption must be lower than labour income, 

(iii) short selling of assets is not allowed, 

(iv) members are not allowed to borrow from future contributions.
13

  

 

Members are assumed to join the pension plan at age 20 (denoted time 0=t  below) 

without bringing in any transfer value from a previous plan and the retirement age is 

fixed at 65. We work in time units of one year and members are assumed to live to a 

maximum age of 120ω = . 

 

2.1.1 Preferences 

We assume the plan member possesses the discrete-time recursive utility function 

proposed by Epstein and Zin (1989): 

( ) ( )

1
1 11 1

1 1

20 1
1

1
1

20 20 20 20 20 20 1 201 1
1

ϕ ϕ
γ γ

γϕβ β
γ

− −

− −
+ +

−
−

+ + + + + + + +

 
             = − + × + − × ×   −        
  

t

t t t t t t t

W

b
V p C E p V p b    [4] 

 

                                                 
13 Some studies have assumed that the member can borrow from future contributions (i.e., to incorporate a loan in the 

portfolio equal to the present value of future contributions). In this way, Boulier et al. (2001) and Cairns et al. (2006) 

investigate the optimal asset allocation of DC pension plan with guaranteed benefit protection. However, there are 

arguments against the use of this assumption. In most cases, this would not be allowed in practice. Also, the loan 

amount depends on assumptions about the level of future contributions and, in practice, there can be a lot of uncertainty 

about future contributions. 
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where 

• 20+tV  is the utility level at time t  (or age 20 + t ), 

• 20+tW  is the wealth level at time t , 

• 20+tC  is the consumption level at time t , 

• γ  is the coefficient of relative risk aversion (RRA), 

• ϕ  is the elasticity of intertemporal substitution (EIS), 

• β  is the discount factor for each year, and 

• 20+tp  is the one-year survival probability at time t  (i.e., the probability that a 

member who is alive age 20 + t  survives to age 20 1+ +t ). 

 

The parameter b  is the “bequest intensity” and determines the strength of the bequest 

motive. If a member dies during the year of age 20 + t  to 20 1+ +t , the deceased member 

will give the remaining wealth at the end of the year, 
120 ++tW , a utility measure of 

( ) ( )
1

20 1 1tb W b
−

+ +× −
γ

γ . Thus, a higher value of b  implies that the member has a 

stronger desire to bequest wealth on death. 

 

In the final year of age ( )1,ω ω− , where we have 1 0ω− =p , equation [4] reduces to: 

1
1 11 1

1 1

1
1

1 1 1
1

ϕ ϕ
γ γ

ω

ϕ
ω ω ωβ

γ

− −

− −

−

− − −

 
             = + ×   −        
  

W

b
V C E b                                    [5] 

which provides the terminal condition for the utility function.  

 

2.1.2 Financial assets 

We assume that there are two underlying assets in which the pension plan can invest: 

(i) a risk-free asset (i.e., a cash fund), and 
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(ii) a risky asset (i.e., an equity fund). 

 

The risk-free asset yields a constant rate of interest r , and the return on the risky asset in 

year t  is given by: 

20 20µ ε+ += + +t tR r                                                    [6] 

where 

• µ  is the (constant) risk premium on the risky asset, and 

• 20 1,20ε σ+ += ×t tZ , where σ is the (constant) volatility of the risky asset and 1,20+tZ  

is an independent and identically distributed (iid) standard Normal random 

variable 

 

Whilst not necessarily corresponding with the real world, the simplified assumption of iid 

returns on the risky asset considerably facilitates the numerical method used. 

 

2.1.3 Labour and pension income 

Before retirement, the member receives an annual salary at the start of each year and 

contributes a proportion π t  of this into the pension plan at time t . We adopt the 

stochastic labour income process used in Cairns et al. (2006) which is illustrated in 

Figure 2.1. The growth rate in labour income prior to retirement is given by: 

20 1 20
20 1 1,20 2 2,20

20

σ σ+ + +
+ + +

+

−
= + + × + ×t t

t I t t

t

S S
I r Z Z

S
                            [7] 

where 

• Ir  is the long-term average annual real rate of salary growth (reflecting 

productivity growth in the economy as a whole), 

• 
20+tS  is the “career salary profile” (CSP), or salary scale, at time t , so that the 

term ( )20 1 20 20t t tS S S+ + + +−  reflects the promotional salary increase between time 

t  and time 1+t , 

• 
1σ  represents the volatility of a shock that is correlated with equity returns, 

• 2σ  represents the volatility of the annual rate of salary growth, and 
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• tZ +20,2  is an iid standard Normal random variable. 

 

Equations (6) and (7) are subject to a common stochastic shock, 1,20+tZ , implying that the 

correlation between the growth rate in labour income and equity returns is given by 

( )2 2

1 1 2+σ σ σ .  

 

Figure 2.1 – Labour income process 

 

 

Following the work of Blake et al. (2007), we use a quadratic function to model the CSP: 

2

20 1 2

4
1 1 1 3*

45 45 45
+

    = + × − + + × − + +        
t

t t t
S h h                          [8] 

 

On retirement at age 65, the member is assumed to annuitise a proportion k  of the 

accumulated pension fund by buying a life annuity, where k , the annuitisation ratio, is 

chosen to maximise the member’s utility level at retirement. The amount of annuity 

income received depends on the accumulated wealth level at retirement, the annuitisation 

ratio and the price of a life annuity. In this model, the price of a life annuity is calculated 
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using the risk-free return on the cash fund, so it is fixed over time and no annuity risk is 

considered.  After retirement, the member invests the residual wealth that is not 

annuitised. Retirement income therefore comes from two sources: the annuity and 

possible withdrawals from the residual fund until death. 

 

2.1.4 Wealth accumulation 

Before retirement, the growth in the member’s pension wealth will depend on the 

investment strategy adopted, the investment returns on both the risk-free asset and the 

risky asset, and the chosen contribution rate. 

 

The contribution rate at time t  is given by ( )20 20 20 20t t t tY C Y+ + + += −π  (for 0 44≤ ≤t ), 

where 20+tY  is the labour income level at time t . We require the contribution rate to be 

non-negative, so that 20 20+ +≥t tY C  before retirement. The contribution rate is allowed to 

vary over time, so that consumption in any period can adjust to changes in income level 

and investment performance.  

 

We also need to impose the restriction 
20 0+ ≥tW  (for 1000 ≤≤ t ), to ensure that the 

wealth level is always non-negative at each age over the life cycle. 

 

A proportion,
20α +t

, of the member’s pension account is assumed to be invested in the 

risky asset at time t . Then, for 0 43≤ ≤t  (i.e., up to and including the year prior to 

retirement), we have the following recursive relationship for the wealth process: 

( ) ( )20 1 20 20 20 20 201π α µ ε+ + + + + + + = + × + + + t t t t t tW W Y r                             [9] 

 

As mentioned above, we assume that that short selling of assets is not allowed and 

therefore impose the restriction that 200 1α +≤ ≤t .  
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At the start of the year in which the member is aged between 64 and 65, the member 

receives the final salary payment and makes the final contribution to the pension fund. So, 

we have:  

( ) ( )65 64 64 64 64 641π α µ ε−  = + × + + + W W Y r                                 [10] 

 

At the end of this year, the member retires and chooses the annuitisation ratio k , giving a 

residual wealth on retirement at exact age 65 of ( )65 651 −= − ×W k W . The annuitisation 

ratio k  is chosen to maximise the utility level at retirement. This control variable does 

not appear in the utility function, but rather in the wealth constraint in the retirement year. 

 

After retirement, the member invests a proportion 20α +t  (for 45≥t ) of the residual 

wealth (i.e., that which was not annuitised) in the risky asset and receives annuity 

payments rather than labour income at the start of each year, provided that the member is 

still alive. This implies that the recursive relationship for the wealth accumulation process 

at this stage of the member’s life cycle is given by: 

                        ( )65
20 1 20 20 20 20

65

1 α µ ε
−

+ + + + + +

 ×
 = + − × + + +   

 ɺɺ
t t t t t

k W
W W C r

a
                 [11] 

where 65aɺɺ  is the price of a life annuity at age 65 (and, hence, 65 65k W a−× ɺɺ  represents the 

annual annuity income after retirement). 

 

Finally, we must constrain consumption after retirement such that 

( )20 20 65 65t tC W k W a−
+ +≤ + × ɺɺ .   

 

 

2.1.5 The optimisation problem and solution method  

The model has three control variables: the asset allocation at time t , 20α +t , the 

consumption level at time t , 
20+tC , and the annuitisation ratio at retirement, k .  
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The optimisation problem is then: 

( )
20 20

20
, ,

max
α + +

+
t t

t
C k

E V  

subject to the following constraints:  

(i) for 0 43≤ ≤t , we have: 

a) a wealth accumulation process satisfying: 

( ) ( )20 1 20 20 20 20 201 0π α µ ε+ + + + + + + = + × + + + ≥ t t t t t tW W Y r , 

b) an allocation to the risky asset satisfying 10 20 ≤≤ +tα , and 

c) a contribution rate satisfying 20 0π + ≥t ; 

 

(ii) for 44=t , we have: 

a) a wealth accumulation process satisfying: 

( ) ( ) ( )( )65 64 64 64 64 641 1 0π α µ ε = − × + × + + + ≥ W k W Y r , 

b) an allocation to the risky asset satisfying 640 1α≤ ≤ , 

c) a contribution rate satisfying 64 0π ≥ , and 

d) an annuitisation ratio at age 65 satisfying 10 ≤≤ k ; 

 

(iii) and, for 45≥t , we have: 

a) a wealth accumulation process satisfying: 

( )65
20 1 20 20 20 20

65

1 0α µ ε
−

+ + + + + +

 ×
 = + − × + + + ≥   

 ɺɺ
t t t t t

k W
W W C r

a
, 

b) an allocation to the risky asset satisfying 10 20 ≤≤ +tα , and 

c) consumption satisfying 65
20 20

65

−

+ +

 ×
≤ + 
 ɺɺ

t t

k W
C W

a
. 
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The Bellman equation at time t  is: 

 

( )

( ) ( )
20 20

20 20 20

1
1 1

1 1

1 1

20 1
1

1
1

20 20 20 20 20 1 20
, ,

,

max 1 1
1

ϕ ϕ
γ γ

γϕ

α
β β

γ+ +

+ + +

− −

− −
+ +

−
−

+ + + + + + +

 
             = − + × + − × ×   −        
  

t t

t t t

t

t t t t t t
C k

J W Y

W

b
p C E p J p b

 [12] 

 

An analytical solution to this problem does not exist, because there is no explicit solution 

for the expectation term in the above expression. Instead, we must use a numerical 

solution method to maximise the value function and derive the optimal control 

parameters. We use the terminal utility function at age 120 to compute the corresponding 

value function for the previous period and iterate this procedure backwards, following a 

standard dynamic programming strategy.   

 

To avoid choosing a local maximum, we discretise the control variables (i.e., asset 

allocation, consumption and annuitisation ratio) into equally spaced grids and optimise 

them using a standard grid search. As an important step in implementing the stochastic 

dynamic programming strategy, we need to discretise both the state space and shocks in 

the stochastic processes (i.e., equity return and labour income growth) first. Wealth and 

labour income level are discretised into 30 and 10 evenly-spaced grid points, respectively, 

in the computation.
14

 Also, the shocks in both the equity return and labour income growth 

processes are discretised into 9 nodes.
15

 

 

                                                 
14  Clearly, the choice concerning the number of nodes is subjective, but we felt that this choice represents an 

appropriate trade-off between accuracy and speed of computation. 
15  Again, 9 nodes represents a balance between accuracy and computing time, and is a standard setting in the existing 

literature.  
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The expected utility level at time t  is then computed using these nodes and the relevant 

weights attached to each (i.e., Gauss quadrature weights and interpolation nodes).
16

 The 

advantage of using this set of nodes is that the state variables can be computed more 

quickly and precisely; however, because we have a fine grid on the control variables and 

a much coarser grid on the shocks, we may have some state variable values outside of the 

grid points in the next time period. In this case, cubic spline interpolation is employed to 

approximate the value function. While this approach does not significantly reduce the 

accuracy of the results obtained, use of a much finer grid for the shocks in the equity 

return and labour income growth processes would significantly increase computing time, 

as mentioned previously. 

 

For each age 20 + t  prior to the terminal age of 120, we compute the maximum value 

function and the optimal values for the control variables at each grid point. Substituting 

these values in the Bellman equation, we obtain the value function of this period, which 

is then used to solve the maximisation problem for the previous time period. Details of 

the dynamic programming and integration process are given in Appendix 1. The 

computations were performed in MATLAB.
17

  

 

2.2 Parameter calibration 

We begin with a standard set of baseline parameter values (all expressed in real terms) 

presented in Table 2.1. 

 

The constant net real interest rate, r , is set at 2% p.a., while, for the equity return process, 

we consider a mean equity premium, µ , of 4% p.a. and a standard deviation, σ , of 20% 

p.a.. Using an equity risk premium of 4% p.a. (as opposed to the historical average of 

around 6%) is a common choice in recent literature (e.g., Fama and French (2002), 

Gomes and Michaelides (2005)). This more cautious assumption reflects the fact that the 

historical equity risk premium might be higher than can reasonably be expected in future, 

and thus will reduce the weight given to equities in the optimal portfolios obtained. We 

                                                 
16

 For more details, see Judd (1998, page 257-266). 
17

 http://www.mathworks.com/products/matlab/. The code is available on request from the authors. 
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use the projected PMA92 table
18

 as the standard male mortality table, and hence, using a 

(real) interest rate of 2% p.a., the price of a whole life annuity from age 65 is 15.87. 

 

Table 2.1 Baseline parameter values 

Asset returns 
 

 Preference parameters  

risk-free rate, r  0.02 RRA, γ  5 

equity premium, µ  0.04 EIS, ϕ  0.2 

volatility, σ  0.2 bequest intensity, b  1 

  discount factor, β  0.96 

    
Mortality  Labour income process  
mortality table PMA92  starting salary, 

20Y  1 

  average salary growth, 
Ir  0.02 

Annuity  volatility of shock correlated with 

equity returns, 1σ  

 
0.05 

annuity price, 65
ɺɺa  15.87 

(based on 
PMA92 and a 
risk-free rate of 

0.02) 

volatility of annual rate of salary 

growth, 
2σ  

 
0.02 

  
1h  -0.276 

  
2h  0.75835 

 

 

We start by presenting results for what might be considered as a relatively standard plan 

member, with RRA of 5γ = , EIS of 0.2ϕ =  and discount factor 0.96β = .
19

 As 

mentioned above, the bequest intensity, b , plays an important role in life-cycle saving 

and investment. We set b  equal to unity in the baseline case (which represents a 

moderate level of bequest saving motive). We later conduct a sensitivity analysis on these 

parameter values.  

 

The starting salary is normalised on unity. All absolute wealth and income levels are 

measured in units of the starting salary. In line with post-war UK experience, the 

annualised real growth rate of national average earnings is assumed to be 2% p.a. with a 

                                                 
18 PMA92 is a mortality table for male pension annuitants in the UK based on experience between 1991 and 1994; here, 

we use the projected rates for the calendar year 2010, i.e., the table PMA92(C2010), published by the Continuous 

Mortality Investigation (CMI) Bureau in February 2004.  
19 This parameter constellation is common in the literature (e.g., Gomes and Michaelides (2004)). The values of RRA 

and EIS are also consistent with power utility for the baseline case.    
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standard deviation of 2% p.a. (i.e., 0.02Ir =  and 
2 0.02=σ ). Following the work of 

Blake et al. (2007), we estimate the CSP parameters 1h  and 2h  using average male salary 

data (across all occupations) reported in the 2005 Annual Survey of Hours and Earnings.  

The estimated values are 1 0.276= −h  and 2 0.75835=h  (see [8]). 

 

 

3 Results 

3.1 Baseline case 

3.1.1 Optimal asset allocation assuming no bequest motive or labour income risk 

As suggested by equation [3] above, the optimal portfolio composition should be constant 

when there is no bequest motive and labour income risk is ignored. Figure 3.1 shows the 

optimal equity weight for the final time period (i.e., year of age 119 to 120) with no 

bequest motive. As expected, we can see that when the accumulated wealth level is large 

(and labour income is small in comparison), the optimal asset allocation is close to the 

result suggested in equation [3], so that we have: 

 120 120

2 2

cov( , )1
1 0.2

µ
α

γσ γ σ
  −

= + − × ≈ 
 

R V
 

 

This result shows that we can approximate an analytical solution numerically reasonably 

accurately, thereby justifying the use of our grid search numerical method. 

 

3.1.2 Simulation output 

The output from the optimisation exercise is a set of optimal control variables (i.e., asset 

allocation, 20α +t , and consumption level, 20+tC ) for each time period and the optimal 

annuitisation ratio, k , at retirement age 65. We generate a series of random variables for 

both the equity return and labour income shocks, and then generate 10,000 independent 

simulations of wealth and labour income levels.  

 

 



 23

 

 

Figure 3.1 – Optimal equity allocation for the final time period 
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Figure 3.2 shows the simulation means of labour income and optimal wealth and 

consumption levels for ages 20, 21, …, 120, and Figure 3.3 shows the consumption 

profile on a larger scale. We have bequest and retirement saving motives in this model. In 

the early years of the life cycle (i.e., up to age 45 or so), wealth accumulation is driven by 

the bequest intensity (i.e., the extent of the desire to protect dependants if the member 

dies) and by the attitude to risk (i.e., the degree of aversion to cutting consumption in 

unfavourable states).
20

 Consumption increases smoothly during this period. Then, as the 

member gets older, the retirement motive becomes more important as the member 

recognises the need to build up the pension fund in order to support consumption after 

retirement. From age 45 to the retirement age of 65, the retirement savings motive 

dominates and the pension fund grows significantly. As a result, consumption remains 

almost constant during this period.  

 

                                                 
20 This will become clearer in sections 3.2.1 and 3.2.2. 



 24

After retirement, there is a large fall in consumption compared with the period 

immediately prior to retirement and thereafter consumption remains stable for the 

remainder of the member’s lifetime. Evidence presented in Banks et al (1998) shows that 

consumption tends to fall after retirement. Part of this is explained by the fact that work-

related expenses such as travel and clothes no longer need to be incurred. Part is 

explained by the fact that precautionary balances need to be maintained to pay for lumpy 

expenditures such as car repairs or home maintenance, given that working to pay for 

these expenses is no longer an option. Part is also explained by the fact that retired people 

tend to stay at home more and so spend less on high-cost items, such as restaurant meals 

and   holidays. We do not attempt to model these complex issues in a formal way. Instead, 

we try to capture them in the post-retirement consumption constraint 

( )( )20 20 65 65t tC W k W a−
+ +≤ + × ɺɺ  (i.e., for 45≥t ), given in section 2.1.4 above. 

Consumption after retirement is therefore subject to a cash-in-hand constraint and cannot 

exceed the sum of pension income and unannuitised wealth. The constraint is tighter the 

higher the fraction, k,  of pension wealth the member chooses to annuitize at age 65. 

Given that k is a control variable, Figure 3.3 shows the optimal reduction in consumption 

in retirement when k is chosen optimally (i.e., to maximise ( )64E V ).  

 

The size of the fall in consumption at retirement when there is a cash-in-hand constraint 

will be influenced by the level of non-pension wealth, such as discretionary savings or 

housing. Since non-pension wealth does not need to be annuitized, it acts as a buffer that 

can be used to smooth life-cycle consumption. Non-pension wealth is outside the scope 

of the present paper. 
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Figure 3.2 – Mean of simulated wealth, consumption and income 

 

 

 

Figure 3.3 – Mean of consumption 
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Figure 3.4 shows the expected NPV of total future labour income (i.e., human capital). 

We can see that human capital increases until about age 35. This is because of the very 

high rate of salary growth in the early years (relative to the discount rate applied to future 

labour income).  

 

Figure 3.4 – Human capital 

 

 

 

Figure 3.5 shows six possible optimal asset allocation profiles for equities at each age 

before retirement, 20α +t . Each profile coincides with a particular quantile from the 

distribution of outcomes from 10,000 simulations.These profiles are consistent with the 

investment strategy called “stochastic lifestyling”, first outlined in Cairns et al (2006), 

with a high equity weighting at younger ages and a gradual switch from equities to the 

risk-free financial asset as the retirement age approaches. Prior to around age 35, the 

member should invest all financial wealth in the risky asset, because the implicit holding 

in the non-tradable riskless asset (i.e., human capital) is increasing, as illustrated in 

Figure 3.4.  However, after age 35, human capital starts to decline. The member should 

then begin to rebalance the financial wealth portfolio towards the risk-free financial asset 
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to compensate for the decline in human capital. This is because the risk-free financial 

asset and human capital are substitutes, with the degree of substitutability inversely 

related to the correlation between labour income growth and equity returns, 

( )2 2

1 1 2+σ σ σ .  

 

The investment strategy is known as “stochastic lifestyling” because the optimal equity 

weighting over the life cycle depends on the realised outcomes for the stochastic 

processes driving the state variables, namely labour income and the risky financial asset. 

The profiles have a similar shape which can be characterised as three connecting (and 

approximately) linear segments. The first is a horizontal segment involving a 100% 

equity weighting (approximately) from age 20 to an age somewhere in the range of 40-47. 

The second is a steep downward segment that involves a reduction in equities to 

somewhere between 10-40% over a seven year period. The third is a more gentle 

downward sloping segment that reduces the equity weighting to somewhere between 0-

10% by the retirement age. It is important to note that the profiles in Figure 3.5 are not, 

however, consistent with the more traditional “deterministic lifestyling” strategy, which 

involves an initial high weighting in equities with a predetermined linear switch from 

equities to cash in the period leading up to retirement (typically the preceding 5 or 10 

years).  
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Figure 3.5 – Optimal equity allocation prior to retirement 

 

 

Figure 3.6 plots six quantiles from the distribution of optimal contribution rates, 

corresponding to the optimal asset allocation strategies shown in Figure 3.5. Considering 

the profile corresponding to the mean, the initial annual contribution rate at age 20 is just 

under 8% p.a.. It then decreases steadily to below 1% by age 35. This fall reflects a trade-

off between the bequest motive and risk aversion, on the one hand, and the increase in 

human capital, on the other.  Prior to age 35, when labour income is growing very rapidly 

and human capital is increasing, the member wishes to increase consumption and does so 

by reducing the contribution rate into the pension plan, despite being both risk averse and 

having a bequest motive.
21

  After age 35, however, labour income growth slows down 

and human capital begins to decline, and the retirement savings motive starts to become 

important. The contribution rate then increases steadily to almost 15% p.a. by age 48. 

Labour income flattens out after age 48 (see Figure 2.1) and the contribution rate then 

remains roughly constant until retirement.  

 

 

                                                 
21

 Note that pension contributions will fall by less than the contribution rate since income is growing. 
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Figure 3.6 – Optimal contribution rate 

 

 

The most interesting finding from Figure 3.6 is that the optimal contribution rate in a DC 

pension plan is age-related, rather than constant.  It exhibits a U-shaped pattern between 

age 20 and age 48 and it is only (approximately) constant after age 48. As a consequence, 

the contribution rate is very variable, ranging from, in the case of the mean profile, below 

1% (at age 35) to almost 15% (at ages 48 and above). The other quantiles have a very 

similar shape: they are relatively close to the mean during the U-shaped phase, but have a 

wider range of post-age-48 constant rates (ranging between 10 and 20%).   

 

An age-related pattern of contribution rates is not common in real-world DC plans: for 

example, in the UK, there is typically a fixed standard (combined employer and 

employee) contribution rate varying between 8 and 10% (GAD (2006, Table 8.2)). 

Although age-related contribution rates are not common, minimum contributions are 

more so. Figure 3.7 illustrates the mean optimal contribution rate over the life cycle when 

a lower limit of 5% p.a. is imposed on the contribution rate (the original unconstrained 

mean contribution rate profile is shown for comparison). In this case, the member 

accumulates greater pension wealth when young and, therefore, can afford a lower 
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contribution rate as retirement approaches. Further, because of the higher accumulated 

pension wealth, the member switches to the risk-free asset earlier, as shown in Figure 3.8 

(the original unconstrained mean optimal asset allocation is shown for comparison).. 

Nevertheless, there is a cost from imposing this constraint: expected utility at age 20 

drops by around 1% (from 2.349 to 2.329).  

 

Figure 3.7 – Mean optimal contribution rate (with lower limit on contribution rate of 5% 

per annum, shown as dotted line) 
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Figure 3.8 – Mean optimal equity allocation (with lower limit on contribution rate of 5% 

per annum, shown as dotted line) 

 

 

 

3.2 Sensitivity analysis 

In this section, we conduct a sensitivity analysis on the key parameters in the model. 

 

3.2.1 RRA and EIS 

We begin by examining simulation results for plan members with different RRA and EIS. 

As shown in Table 3.1 (see also Table 1.1), we have four types: 

● low RRA and low EIS (Type 1): 

o risk-tolerant member who dislikes consumption volatility over time 

o e.g., low income member without dependants 

● low RRA and high EIS (Type 2): 

o risk-tolerant member who does not mind consumption volatility over time 

o e.g., high income member without dependants 
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● high RRA and low EIS (Type 3): 

o risk-averse member who dislikes consumption volatility over time 

o e.g., low income member with dependants 

● high RRA and high EIS (Type 4): 

o risk-averse member who does not mind consumption volatility over time 

o e.g., high income member with dependants 

 

The baseline case in Section 3.1 dealt with Type 3 (highlighted in Table 3.1), a member 

with a high RRA and a low EIS (i.e., 5=γ  and 0.2=ϕ ). 

 

 
Table 3.1 RRA and EIS values for the different types of plan member 
 

 RRA, γ  EIS, ϕ  

Type 1 2 0.2 

   

Type 2 2 0.5 

   

Type 3 5 0.2 

   

Type 4 5 0.5 

  

 

 

Figure 3.9 shows the different patterns of optimal contribution rates corresponding to 

these four types. For risk-tolerant members with low RRA (i.e., Types 1 and 2), 

contributions prior to age 50 are negligible. From age 50 or so, the retirement savings 

motive kicks in and contributions into the pension plan begin. The contribution rate is 

lower for Type 1 (low EIS) than for Type 2 (high EIS) members (by approximately 3-4% 

p.a.). This lower retirement savings intensity is the result of a stronger aversion to cutting 

consumption: due to the lower EIS level, cuts in consumption needed to fund the pension 

plan are more heavily penalised in the utility function of Type 1 members than of Type 2 

members. 
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Figure 3.9 – Mean optimal contribution rate (for different RRA/EIS combinations) 

 

 

As a result of the lower mean contribution rates (particularly at younger ages), risk-

tolerant members, ceteris paribus, accumulate a lower level of pension wealth. They 

therefore need (and are, of course, willing to accept) a much higher average equity 

weighting (and the corresponding equity premium) in the financial portfolio in an attempt 

to produce the desired level of retirement savings. As shown in Figure 3.10, the mean 

equity allocation decreases only gradually and still exceeds 70% at retirement. The risk-

tolerant member with a low EIS level (i.e., Type 1) chooses a higher equity weighting at 

retirement (by approximately 10%) than the risk-tolerant member with a high EIS level 

(i.e., Type 2). This is because, as discussed above, the annual contribution rate is lower 

and the reliance on the equity premium correspondingly greater.  
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Figure 3.10 – Mean optimal equity allocation (for different RRA/EIS combinations) 

 

 

For risk-averse members with high RRA (i.e., Types 3 and 4), Figure 3.9 shows that the 

bequest motive leads to much larger initial contributions (in excess of 7% p.a. at age 20 

on average) than for members with low RRA, and the retirement savings motive leads to 

a significant rise in contributions after age 40, again compared with low RRA members. 

For those risk-averse members with low EIS (i.e., Type 3), the variability of the 

contribution rate over the working life is much less pronounced  than is the case for those 

risk-averse members with high EIS (i.e., Type 4). The contribution rate is also lower 

particularly at very young and very old ages (e.g., by around 5% p.a. at both age 20 and 

60 on average). The explanation is the same as given above (i.e., the reluctance of 

members with a lower EIS level to tolerate cuts in current consumption to fund future 

consumption in retirement). The fall in the contribution rate to an average of around 1% 

between age 20 and age 35 for risk averse members is explained by the increase in human 

capital over this period which increases the desire for current consumption at the expense 

of saving for retirement. 
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As a result of higher contribution rates, risk-averse members accumulate a much higher 

level of pension wealth and, as can be seen in Figure 3.10, switch away from equities 

much earlier (from about age 40) and hold less than 10% of the pension fund in equities 

at retirement on average.  

 

For a given level of risk aversion, Figure 3.10 shows that a lower EIS leads to a higher 

equity weighting during the later stages of the accumulation phase of the pension plan. At 

first sight, this finding seems counterintuitive: surely individuals with a lower IES would 

prefer a lower equity weighting in their pension fund and hence more stable contributions 

over time? Constantinides (1990), for example, appeals to habit formation (i.e., the 

complementarity between consumption in adjacent periods) for inducing a strong desire 

for stable consumption and a correspondingly low demand for equities. However, in our 

model, the retirement saving motive is important, since the only source of post-retirement 

consumption in our model comes from the pension plan. During the accumulation phase, 

a member with a low EIS is not willing to reduce current consumption in order to 

increase plan contributions (to meet the retirement saving motive), but is willing to use a 

higher equity weighting and the corresponding equity premium in an attempt to generate 

the necessary retirement savings. Figure 3.10 shows that the retirement savings effect 

dominates the habit formation effect in determining the equity weighting in the later 

years of the accumulation phase (Gomes and Michaelides (2005) derived the same result). 

 

3.2.2 Bequest motive 

Investors with a desire to bequest wealth to their dependants on death would be expected 

to save more than those who do not. Figure 3.11 shows the mean optimal pattern of 

contribution rates for the baseline case of  5γ =  and 0.2ϕ =  and different bequest 

intensities. When the bequest motive is absent (b = 0), members consume almost all of 

their earnings in the early years of their working lives, and have very negligible 

contributions into their pension plans. By contrast, members with a high bequest intensity 

(b = 2.5) make very high contributions in the early years (14% at age 20). They also 
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make higher contributions throughout their working lives,
22

 but the differences after age 

35 are much less.  

 

Figure 3.12 shows that the optimal equity weight in the portfolio is lower, the higher the 

bequest intensity. However, the effect is small because: first, the mortality rate does not 

vary much before retirement, and second, and more importantly, the annuitisation ratio (k) 

is a control variable in our model and, thus, a member with a high bequest intensity could 

choose to annuitise a smaller ratio of the pension fund at retirement, instead of assuming 

significant equity risk in an attempt to accumulate more wealth prior to retirement.
23

 

 

Figure 3.11 – Mean optimal contribution rate (for different levels of bequest motive) 

 

 

 

 

 

 

                                                 
22 Although it is still pulled down to below 1% between ages 20 and 35 by the effect of the increase in human capital. 
23 This is confirmed in Table 3.2 below. 
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Figure 3.12 – Mean optimal equity allocation (for different levels of bequest motive) 

 

 

 

3.2.3 Personal discount factor 

Figures 3.13 and 3.14 show the outcome from conducting a sensitivity analysis on β , the 

individual’s personal discount factor, on the mean optimal contribution rate and asset 

allocation. 

 

Individuals with a low personal discount factor (or high personal discount rate) value 

current consumption more highly than future consumption in comparison with 

individuals with a high personal discount factor. This will lead, ceteris paribus, to a 

lower contribution rate into the pension plan as shown in Figure 3.13.  There will be a 

correspondingly slower accumulation of financial wealth and therefore a higher ratio of 

human to financial wealth throughout the working life. This, in turn, leads to an optimal 

lifestyle strategy with a higher portfolio allocation to the risky asset throughout the 

working life, together with a shorter switching period, as shown in Figure 3.14.   

Figure 3.13 – Mean optimal contribution rate (for different levels of personal discount 

factor, β ) 
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Figure 3.14 – Mean optimal equity allocation (for different levels of personal discount 

factor, β ) 
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3.2.4 Correlation between labour income growth and equity returns 

In our model, the degree of correlation between labour income growth and equity returns 

is determined by ( )2 2

1 1 2+σ σ σ .  When this correlation coefficient is high, human 

capital and financial wealth will also be highly correlated. Although the ratio of human 

capital to financial wealth will fall over the life cycle, it will do so more gradually when 

the correlation coefficient is high than when it is low. As discussed earlier, this ratio is a 

crucial determinant of portfolio composition over the life cycle: as it falls, so does the 

optimal weight in equities. A more gradual decline in the ratio of human capital to 

financial wealth will lead to a more gradual switch from equities to the risk-free financial 

asset.  

 

We assume a high correlation of 0.93 in our baseline case. Figures 3.15 and 3.16 show 

the outcomes from conducting a sensitivity analysis on this correlation coefficient: we 

lowered it to 0.70.  The lower correlation coefficient has a negligible effect on the 

optimal contribution rate (Figure 3.15), but leads to a later and steeper switch away from 

equities (Figure 3.16). 
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Figure 3.15 – Mean optimal contribution rate (for different levels of correlation between 

labour income and equity returns) 

 

 

Figure 3.16 – Mean optimal equity allocation (for different levels of correlation between 

labour income and equity returns) 
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3.2.5 Salary growth rate 

Finally, Figure 3.17 shows the effect on the mean optimal equity allocation of increasing 

the average annual real rate of salary growth, Ir , from 2% to 5%. The optimal equity 

weighting is lower at most ages.  

 

Figure 3.17 – Mean optimal equity allocation (different average annual real rate of salary 

growth rates) 

 

 

3.2.6 Annuitisation ratio 

Although the annuitisation ratio, k, is part of the budget constraint not the utility function, 

it is still a control variable in our model, and is chosen to maximise ( )64E V , conditional 

on the values for RAA, EIS and the personal discount factor (see Section 2.1.5 above). 

Table 3.2 shows the mean optimal values of k corresponding to different values for RAA, 

EIS and the personal discount factors. 
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There is a positive relationship between RAA and the annuitisation ratio, k, and also 

between EIS and k, although the relationship in each case is not very strong. There is, 

unsurprisingly, a much stronger relationship between the bequest intensity, b, and k. 

When there is no bequest motive, the member annuitises the largest ratio (99.35%) of his 

pension wealth.
24

 According to Yaari (1965), when there is no bequest motive, the 

member should annuitise the entire accumulated pension fund at retirement. Davidoff et 

al (2005) extend Yaari’s framework to include imperfect credit markets and habit 

formation (i.e., a low IES) and show it is optimal to annuitise less than 100% of wealth, 

but the optimal proportion is still very high. We find that this is the case even when we 

impose a significant reduction in the discount factor, β . A discount factor of 0.9, 

implying a very high personal discount rate of 10% (and very strong preference for 

current over future consumption) only reduces the optimal annuitisation ratio to 88%.  

 

Table 3.2  The effect of the preference parameters on the mean optimal annuitisation ratio 

Preference parameter Optimal annuitisation ratio (mean %) 

RRA, γ   

2 93.17 

5 94.72 

EIS, ϕ   

0.2 94.72 

0.5 95.88 

Bequest intensity, b  

0.0 99.35 

1.0 94.72 

2.5 90.03 

Discount factor, β   

0.90 87.66 

0.96 94.72 

0.99 96.43 

  

Note: All parameters are at their baseline values (see Table 2.1) unless otherwise stated 

                                                 
24

 We obtain a value of 99.35% when the bequest motive is zero (rather than the expected 100%) due to the numerical 

methods used to solve the problem and the estimation error caused by interpolation approximations. 
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4 Conclusion 

In this paper, we have examined optimal funding and investment strategies in a DC 

pension plan using a life-cycle model that has been extended in three significant ways: 

(i) the assumption of Epstein-Zin recursive preferences by the plan member which 

enables a separation between the RRA and EIS, 

(ii) the introduction of human capital as an asset class along with financial assets, 

such as equities and cash, and 

(iii) endogenising the decision about how much to annuitise at retirement. 

 

We also considered two important motives for saving: bequest and retirement. In addition, 

a plan member’s personal discount rate influenced the optimal strategies. 

 

We found that the optimal funding strategy typically exhibits a U-shaped pattern for the 

contribution rate in early working life and then stabilises in the period leading up to 

retirement. The initial high level is explained by a high bequest intensity combined with a 

high degree of risk aversion. The falling part of the U is explained by the increase in 

human capital inducing an increase in consumption at the expense of savings, while the 

rising part of the U is explained by the retirement savings motive. A higher personal 

discount rate lowers contributions at each age, while preserving the general shape of the 

optimal contribution profile. A lower bequest intensity reduces contributions to the 

pension plan in early career and in the extreme case of a zero bequest intensity 

completely eliminates them until mid-career when the retirement savings motive kicks in. 

The effect of lower risk aversion is to delay the start of contributions into the pension 

plan: contributions do not begin until late in the working life, but then increase steadily 

until the retirement age. The effect of lower EIS is to reduce contributions into the plan at 

all ages, since members with low EIS are reluctant to accept cuts in consumption to “pay 

for” the pension contributions.  
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We found that the optimal investment strategy is stochastic lifestyling rather than the 

more conventional deterministic lifestyling. While the optimal weighting in equities is 

initially very high and subsequently declines as the retirement date approaches, it does 

not do so in a predetermined manner as in the case of deterministic lifestyling. Instead the 

optimal equity weighting over the life cycle depends on the realisations of the stochastic 

processes determining labour income and equity returns. Stochastic lifestyling is justified 

by recognising the importance of human capital and interpreting it as a bond-like asset 

which deteriorates over the working life. An initial high weighting in equities is intended 

to counterbalance human capital in the combined “portfolio” of human capital and 

pension wealth. In time, the weighting in equities falls, while that in bonds rises as human 

capital decays over time. When the correlation between labour income and equity returns 

is high, human capital and pension wealth will also be more highly correlated; the 

optimal switch away from equities over the life cycle will therefore be later and steeper.  

 

The size of the pension fund is a crucial determinant of the optimal asset allocation. The 

greater the pension wealth accumulated, the more conservative the optimal asset 

allocation strategy will be, for a given RAA, EIS and discount rate. Also, the higher the 

contribution rate, the earlier the switch out of equities can be made. In our model, risk-

tolerant members who value both current consumption over future consumption as 

smooth consumption profiles over time (i.e., have a low RRA, a high discount rate and a 

low EIS) accumulate the lowest pension wealth levels and therefore need to adopt the 

most aggressive investment strategy. 

 

Finally, we found that the optimal annuitisation ratio was typically very high, suggesting 

that longevity protection is a hugely valuable feature of a well-defined DC pension plan 

to a rational consumer. It was negatively related to the bequest intensity and the discount 

rate, but not very sensitive to RRA or EIS. 

 

The results in this paper have some important implications for the optimal design of DC 

pension plans: 
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● An investment strategy involving a switch from equities to bonds as members 

approach retirement is appropriate for DC pension plans, even when equity 

returns are not mean reverting. However, the switch out from equities is not 

predetermined, but depends on what happens to equity returns. Nevertheless, 

the switch should typically be made earlier than in traditional lifestyle 

strategies (i.e., from age 45 or so rather than age 55, which is more common 

in practice). Also, the optimal equity weight in the portfolio typically never 

reduces to zero (even immediately prior to retirement), as is common in 

traditional lifestyle strategies. 
 

● It is very important to incorporate the salary process in the optimal design of a 

DC pension plan.
25

 For most people, their human capital will be bond-like in 

nature and this will have a direct impact on the optimal contribution rate and 

asset allocation decisions, in particular, justifying a high weight for equities in 

the pension plan.  However, for senior plan members whose salary levels 

(including bonus and dividends from their own stock holdings) may have a 

strong link with corporate profitability, their labour income growth rate may 

be much higher than the risk-free rate of return and also be more volatile. In 

this case, their human capital asset will be more equity-like in nature and so 

the optimal investment strategy will be more geared towards the risk-free 

asset (as shown in Figure 3.17).  

 

● The results provide some justification for age-related contribution rates in DC 

plans. Because members tend to prefer relatively smoothed consumption 

growth, a plan design involving a lower contribution rate (e.g., 5% p.a. or less) 

when members are young, and a gradually increasing contribution rate as 

members get older (reaching on average 15% p.a. in the period prior to 

retirement) offers higher expected utility than fixed age-independent 

contribution rates. Greater contribution rate flexibility will be especially 

welcomed by members with high EIS. Such members are more sensitive to 

                                                 
25 This was first pointed out by Blake et al (2007). 
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changes in financial incentives and thus are more desirous of flexible 

contribution rates. If they were allowed to make additional voluntary 

contributions (AVCs), the optimal asset allocation strategy would actually 

become more conservative as they approach retirement. 

 

● An annuity is an important component of a well-designed plan. The optimal 

annuitisation ratio is very high, even when there is a strong bequest motive 

and the plan member values current consumption highly. This is true despite 

the well-known aversion to annuitisation documented in Friedman and 

Warshawsky (1990) and Mitchell et al (1999). 
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Appendix 1 - Numerical solution for the dynamic programming and 

integration process  

 

The Epstein-Zin utility function at time t  is as follows: 
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The Bellman equation is given by: 

(a) for 430 ≤≤ t , we have: 
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(b) for 44=t , we have: 
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(c) and, for 45≥t , we have: 
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To solve the non-linear expectation part in the Bellman equation above, i.e., ( )1

20 20 1

γ−
+ + +t tE J , 

Gauss-Hermite quadrature is used to discretise 1Z and 2Z  into 9 nodes, and the procedure 

of discretising 1Z  and 2Z  is to substitute 1,2 mZ  and 2,2 nZ  for them respectively. 

So, we have: 

( ) ( )
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9 9 1
1 1
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where 
1,mZw , 

2,nZw and 1,mZ , 2,nZ  are the Gauss-Hermite quadrature weights and nodes, 

and π  is the mathematical constant.  

 

To avoid choosing a local maximum, we discretise both control variables (i.e., 

consumption and asset allocation) into 20 equally-spaced grids and optimise using a 

standard grid search. Wealth and labour income level are discretised in 30 and 10 

equally-spaced grids, respectively. 

 

Substituting the expectation with the Gauss-Hermite approximated function in the 

Bellman equation at time t , we compute the maximum value function and optimal 

variables at each grid point.  We then iterate the procedure back to age 20. For a point in 

the state space other than grid points, cubic spline interpolation is employed to 

approximate the optimal results. 
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