755 research outputs found

    Stable Control of Pulse Speed in Parametric Three-Wave Solitons

    Get PDF
    We analyze the control of the propagation speed of three wave packets interacting in a medium with quadratic nonlinearity and dispersion. We found analytical expressions for mutually trapped pulses with a common velocity in the form of a three-parameter family of solutions of the three-wave resonant interaction. The stability of these novel parametric solitons is simply related to the value of their common group velocity

    Approximation of corner polyhedra with families of intersection cuts

    Full text link
    We study the problem of approximating the corner polyhedron using intersection cuts derived from families of lattice-free sets in Rn\mathbb{R}^n. In particular, we look at the problem of characterizing families that approximate the corner polyhedron up to a constant factor, which depends only on nn and not the data or dimension of the corner polyhedron. The literature already contains several results in this direction. In this paper, we use the maximum number of facets of lattice-free sets in a family as a measure of its complexity and precisely characterize the level of complexity of a family required for constant factor approximations. As one of the main results, we show that, for each natural number nn, a corner polyhedron with nn basic integer variables and an arbitrary number of continuous non-basic variables is approximated up to a constant factor by intersection cuts from lattice-free sets with at most ii facets if i>2n−1i> 2^{n-1} and that no such approximation is possible if i≀2n−1i \leq 2^{n-1}. When the approximation factor is allowed to depend on the denominator of the fractional vertex of the linear relaxation of the corner polyhedron, we show that the threshold is i>ni > n versus i≀ni \leq n. The tools introduced for proving such results are of independent interest for studying intersection cuts

    Activation and degranulation of CAR-T cells using engineered antigen-presenting cell surfaces

    Get PDF
    Adoptive cell transfer of Chimeric Antigen Receptor (CAR)-T cells showed promising results in patients with B cell malignancies. However, the detailed mechanism of CAR-T cell interaction with the target tumor cells is still not well understood. This work provides a systematic method for analyzing the activation and degranulation of second-generation CAR-T cells utilizing antigen-presenting cell surfaces. Antigen-presenting cell surfaces composed of circular micropatterns of CAR-specific anti-idiotype antibodies have been developed to mimic the interaction of CAR-T cells with target tumor cells using micro-contact printing. The levels of activation and degranulation of fixed non-transduced T cells (NT), CD19.CAR-T cells, and GD2.CAR-T cells on the antigen-presenting cell surfaces were quantified and compared by measuring the intensity of the CD3ζ chain phosphorylation and the Lysosome-Associated Membrane Protein 1 (LAMP-1), respectively. The size and morphology of the cells were also measured. The intracellular Ca2+ flux of NT and CAR-T cells upon engagement with the antigen-presenting cell surface was reported. Results suggest that NT and CD19.CART cells have comparable activation levels, while NT have higher degranulation levels than CD19.CAR-T cells and GD2.CAR-T cells. The findings show that antigen-presenting cell surfaces allow a quantitative analysis of the molecules involved in synapse formation in different CAR-T cells in a systematic, reproducible manner

    Axon degeneration assays in Superior Cervical Ganglion explant cultures

    Get PDF
    The ability of peripheral nervous system neurons to extend long, axon-like neurites in vitro makes them ideally suited for studies on mechanisms of axon survival and degeneration. In this chapter we describe how to prepare explant cultures of sympathetic neurons of the superior cervical ganglion (SCG). We also describe how to induce and assess axon degeneration with an injury or a chemical insult

    Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation

    Full text link
    We report a modulational instability (MI) analysis of a mathematical model appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media beyond the so-called slowly varying envelope approximation. Theoretically predicted MI properties are found to be in good agreement with numerical simulation. The study shows the possibility of controlling the generation of MI and formation of solitons in a cascaded quadratic-cubic media in the few cycle regimes. We also find that stable propagation of soliton-like few-cycle pulses in the medium is subject to the fulfilment of the modulation instability criteria

    Extremal flows in Wasserstein space

    Get PDF
    We develop an intrinsic geometric approach to the calculus of variations in theWasserstein space. We show that the flows associated with the Schr\ua8odinger bridge with general prior, with optimal mass transport, and with the Madelung fluid can all be characterized as annihilating the first variation of a suitable action. We then discuss the implications of this unified framework for stochastic mechanics: It entails, in particular, a sort of fluid-dynamic reconciliation between Bohm\u2019s and Nelson\u2019s stochastic mechanics

    Prescriptive Business Process Monitoring for Recommending Next Best Actions

    Full text link
    Predictive business process monitoring (PBPM) techniques predict future process behaviour based on historical event log data to improve operational business processes. Concerning the next activity prediction, recent PBPM techniques use state-of-the-art deep neural networks (DNNs) to learn predictive models for producing more accurate predictions in running process instances. Even though organisations measure process performance by key performance indicators (KPIs), the DNN`s learning procedure is not directly affected by them. Therefore, the resulting next most likely activity predictions can be less beneficial in practice. Prescriptive business process monitoring (PrBPM) approaches assess predictions regarding their impact on the process performance (typically measured by KPIs) to prevent undesired process activities by raising alarms or recommending actions. However, none of these approaches recommends actual process activities as actions that are optimised according to a given KPI. We present a PrBPM technique that transforms the next most likely activities into the next best actions regarding a given KPI. Thereby, our technique uses business process simulation to ensure the control-flow conformance of the recommended actions. Based on our evaluation with two real-life event logs, we show that our technique`s next best actions can outperform next activity predictions regarding the optimisation of a KPI and the distance from the actual process instances

    Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis.

    Get PDF
    Idiopathic pulmonary fibrosis (IPF), the prototypic progressive fibrotic interstitial lung disease, is thought to be a consequence of repetitive micro-injuries to an ageing, susceptible alveolar epithelium. Ageing is a risk factor for IPF and incidence has been demonstrated to increase with age. Decreased (macro)autophagy with age has been reported extensively in a variety of systems and diseases, including IPF. However, it is undetermined whether the role of faulty autophagy is causal or coincidental in the context of IPF. Here, we report that in alveolar epithelial cells inhibition of autophagy promotes epithelial-mesenchymal transition (EMT), a process implicated in embryonic development, wound healing, cancer metastasis and fibrosis. We further demonstrate that this is attained, at least in part, by increased p62/SQSTM1 expression that promotes p65/RELA mediated-transactivation of an EMT transcription factor, Snail2 (SNAI2), which not only controls EMT but also regulates the production of locally acting profibrogenic mediators. Our data suggest that reduced autophagy induces EMT of alveolar epithelial cells and can contribute to fibrosis via aberrant epithelial-fibroblast crosstalk

    Appraisal of MC2010 shear resistance approaches coupled with a residual flexural strength prediction model

    Get PDF
    In the present work the predictive performance of the two approaches proposed by Model Code 2010 for the evaluation of the shear capacity of fiber reinforced concrete (FRC) elements flexurally reinforced with conventional steel bars is assessed considering a database (DBs) constituted by 80 FRC beams do not including conventional transverse reinforcements. The accuracy of these shear models is evaluated by statistical analysis of the prediction ratio between the experimental and estimated shear capacity of the beams of the DBs, and applying the Demerit Points Classification approach for further information about the reliability of the two approaches in design context. Due to the absence of the post-cracking experimental characterization of the FRC used in several beams considered in the DBs, an approach was developed for estimating the residual flexural strength parameters from the most relevant known variables of steel fiber reinforcement mechanisms for concrete, namely the fiber volume and aspect ratio, and the concrete compressive and tensile strength. The residual flexural strength prediction model is assessed and its influence on the performance of the shear resistance models is evaluatedSFRH/BDE/96381/2013 co-funded by CiviTest - Pesquisa de Novos Materiais para a Engenharia Civil, Lda. and by FCT - Portuguese Foundation for Science and Technology. The authors also acknowledge the support provided by the FCT project PTDC/ECM-EST/2635/201

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
    • 

    corecore