49 research outputs found

    Modeling actin filament reorganization in endothelial cells subjected to cyclic stretch

    Get PDF
    Hemodynamic forces affect endothelial cell morphology and function. In particular, circumferential cyclic stretch of blood vessels, due to pressure changes during the cardiac cycle, is known to affect the endothelial cell shape, mediating the alignment of the cells in the direction perpendicular to stretch. This change in cell shape proceeds a drastic reorganization at the internal level. The cellular scaffolding, mainly composed of actin filaments, reorganize in the direction which later becomes the cell's long axis. How this external mechanical stimulus is 'sensed' and transduced into the cell is still unknown. Here, we develop a mathematical model depicting the dynamics of actin filaments, and the influence of the cyclic stretch of the substratum based on the experimental evidence that external stimuli may be transduced inside the cell via transmembrane proteins which are coupled with actin filaments on the cytoplasmic side. Based on this view, we investigate two approaches describing the formulation of the transduction mechanisms involving the coupling between filaments and the membrane proteins. As a result, we find that the mechanical stimulus could cause the experimentally observed reorganization of the entire cytoskeleton simply by altering the dynamics of the filaments connected with the integral membrane proteins, as described in our model. Comparison of our results with previous studies of cytoskeletal dynamics reveals that the cytoskeleton, which, in the absence of the effect of stretch would maintain its isotropic distribution, slowly aligns with the precise direction set by the external stimulus. It is found that even a feeble stimulus, coupled with a strong internal dynamics, is sufficient to align actin filaments perpendicular to the direction of stretc

    Deep inelastic collisions between very heavy nuclei

    Get PDF

    Modeling actin filament reorganization in endothelial cells subjected to cyclic stretch

    Get PDF
    Hemodynamic forces affect endothelial cell morphology and function. In particular, circumferential cyclic stretch of blood vessels, due to pressure changes during the cardiac cycle, is known to affect the endothelial cell shape, mediating the alignment of the cells in the direction perpendicular to stretch. This change in cell shape proceeds a drastic reorganization at the internal level. The cellular scaffolding, mainly composed of actin filaments, reorganize in the direction which later becomes the cell's long axis. How this external mechanical stimulus is 'sensed' and transduced into the cell is still unknown. Here, we develop a mathematical model depicting the dynamics of actin filaments, and the influence of the cyclic stretch of the substratum based on the experimental evidence that external stimuli may be transduced inside the cell via transmembrane proteins which are coupled with actin filaments on the cytoplasmic side. Based on this view, we investigate two approaches describing the formulation of the transduction mechanisms involving the coupling between filaments and the membrane proteins. As a result, we find that the mechanical stimulus could cause the experimentally observed reorganization of the entire cytoskeleton simply by altering the dynamics of the filaments connected with the integral membrane proteins, as described in our model. Comparison of our results with previous studies of cytoskeletal dynamics reveals that the cytoskeleton, which, in the absence of the effect of stretch would maintain its isotropic distribution, slowly aligns with the precise direction set by the external stimulus. It is found that even a feeble stimulus, coupled with a strong internal dynamics, is sufficient to align actin filaments perpendicular to the direction of stretch

    Model for the alignment of actin filaments in endothelial cells subjected to fluid shear stress

    No full text
    Cultured vascular endothelial cells undergo significant morphological changes when subjected to sustained fluid shear stress. The cells elongate and align in the direction of applied flow. Accompanying this shape change is a reorganization at the intracellular level. The cytoskeletal actin filaments reorient in the direction of the cells' long axis. How this external stimulus is transmitted to the endothelial cytoskeleton still remains unclear. In this article, we present a theoretical model accounting for the cytoskeletal reorganization under the influence of fluid shear stress. We develop a system of integro-partial-differential equations describing the dynamics of actin filaments, the actin-binding proteins, and the drift of transmembrane proteins due to the fluid shear forces applied on the plasma membrane. Numerical simulations of the equations show that under certain conditions, initially randomly oriented cytoskeletal actin filaments reorient in structures parallel to the externally applied fluid shear forces. Thus, the model suggests a mechanism by which shear forces acting on the cell membrane can be transmitted to the entire cytoskeleton via molecular interactions alone

    Springs, clutches and motors : driving forward kinetochore mechanism by modelling

    Get PDF
    As a mechanical system, the kinetochore can be viewed as a set of interacting springs, clutches and motors; the problem of kinetochore mechanism is now one of understanding how these functional modules assemble, disassemble and interact with one another to give rise to the emergent properties of the system. The sheer complexity of the kinetochore system points to a future requirement for data-driven mathematical modelling and statistical analysis based on quantitative empirical measurement of sister kinetochore trajectories. Here, we review existing models of chromosome motion in the context of recent advances in our understanding of kinetochore molecular biology
    corecore