158 research outputs found
Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST
Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show
that the inverse gradient scale length of the ion temperature R/LTi (normalized
to the major radius R) has its strongest local correlation with the rotational
shear and the pitch angle of the magnetic field (or, equivalently, an inverse
correlation with q/{\epsilon}, the safety factor/the inverse aspect ratio).
Furthermore, R/LTi is found to be inversely correlated with the
gyro-Bohm-normalized local turbulent heat flux estimated from the density
fluctuation level measured using a 2D Beam Emission Spectroscopy (BES)
diagnostic. These results can be explained in terms of the conjecture that the
turbulent system adjusts to keep R/LTi close to a certain critical value
(marginal for the excitation of turbulence) determined by local equilibrium
parameters (although not necessarily by linear stability).Comment: 6 pages, 3 figures, submitted to PR
Symmetry breaking in MAST plasma turbulence due to toroidal flow shear
The flow shear associated with the differential toroidal rotation of tokamak
plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by
the up-down symmetry of the magnetic equilibrium. Using experimental
Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this
symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself
as a tilt of the spatial correlation function and a finite skew in the
distribution of the fluctuating density field. The tilt is a statistical
expression of the "shearing" of the turbulent structures by the mean flow. The
skewness of the distribution is related to the emergence of long-lived density
structures in sheared, near-marginal plasma turbulence. The extent to which
these effects are pronounced is argued (with the aid of the simulations) to
depend on the distance from the nonlinear stability threshold. Away from the
threshold, the symmetry is effectively restored
Comparison of BES measurements of ion-scale turbulence with direct, gyrokinetic simulations of MAST L-mode plasmas
Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative
amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak
(MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission
Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this
turbulence, i.e., amplitudes, correlation times, radial and perpendicular
correlation lengths and apparent phase velocities of the density contours, are
determined by means of correlation analysis. For a low-density, L-mode
discharge with strong equilibrium flow shear exhibiting an internal transport
barrier (ITB) in the ion channel, the observed turbulence characteristics are
compared with synthetic density turbulence data generated from global,
non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code
NEMORB. This validation exercise highlights the need to include increasingly
sophisticated physics, e.g., kinetic treatment of trapped electrons,
equilibrium flow shear and collisions, to reproduce most of the characteristics
of the observed turbulence. Even so, significant discrepancies remain: an
underprediction by the simulations of the turbulence amplituide and heat flux
at plasma periphery and the finding that the correlation times of the
numerically simulated turbulence are typically two orders of magnitude longer
than those measured in MAST. Comparison of these correlation times with various
linear timescales suggests that, while the measured turbulence is strong and
may be `critically balanced', the simulated turbulence is weak.Comment: 27 pages, 11 figure
Experimental Signatures of Critically Balanced Turbulence in MAST
Beam Emission Spectroscopy (BES) measurements of ion-scale density
fluctuations in the MAST tokamak are used to show that the turbulence
correlation time, the drift time associated with ion temperature or density
gradients, the particle (ion) streaming time along the magnetic field and the
magnetic drift time are consistently comparable, suggesting a "critically
balanced" turbulence determined by the local equilibrium. The resulting
scalings of the poloidal and radial correlation lengths are derived and tested.
The nonlinear time inferred from the density fluctuations is longer than the
other times; its ratio to the correlation time scales as
, where ion collision rate/streaming rate.
This is consistent with turbulent decorrelation being controlled by a zonal
component, invisible to the BES, with an amplitude exceeding the drift waves'
by .Comment: 6 pages, 4 figures, submitted to PR
- …