85 research outputs found

    A model of superoutbursts in binaries of SU UMa type

    Full text link
    A new mechanism explaining superoutbursts in binaries of SU UMa type is proposed. In the framework of this mechanism the accretion rate increase leading to the superoutburst is associated with formation of a spiral wave of a new "precessional" type in inner gasdynamically unperturbed parts of the accretion disc. The possibility of existence of this type of waves was suggested in our previous work (astro-ph/0403053). The features of the "precessional" spiral wave allow explaining both the energy release during the outburst and all its observational manifestations. The distinctive characteristic of a superoutburst in a SU UMa type star is the appearance of the superhump on the light curve. The proposed model reproduces well the formation of the superhump as well as its observational features, such as the period that is 3-7% longer than the orbital one and the detectability of superhumps regardless of the binary inclination.Comment: LaTeX, 20 pages, 4 figures, to be published in Astron. Z

    Atmospheric parameters of 82 red giants in the Kepler field

    Full text link
    Context: Accurate fundamental parameters of stars are essential for the asteroseismic analysis of data from the NASA Kepler mission. Aims: We aim at determining accurate atmospheric parameters and the abundance pattern for a sample of 82 red giants that are targets for the Kepler mission. Methods: We have used high-resolution, high signal-to-noise spectra from three different spectrographs. We used the iterative spectral synthesis method VWA to derive the fundamental parameters from carefully selected high-quality iron lines. After determination of the fundamental parameters, abundances of 13 elements were measured using equivalent widths of the spectral lines. Results: We identify discrepancies in log g and [Fe/H], compared to the parameters based on photometric indices in the Kepler Input Catalogue (larger than 2.0 dex for log g and [Fe/H] for individual stars). The Teff found from spectroscopy and photometry shows good agreement within the uncertainties. We find good agreement between the spectroscopic log g and the log g derived from asteroseismology. Also, we see indications of a potential metallicity effect on the stellar oscillations. Conclusions: We have determined the fundamental parameters and element abundances of 82 red giants. The large discrepancies between the spectroscopic log g and [Fe/H] and values in the Kepler Input Catalogue emphasize the need for further detailed spectroscopic follow-up of the Kepler targets in order to produce reliable results from the asteroseismic analysis.Comment: 16 Pages, 12 Figures, accepted for publication in A&

    The hydrogen and helium lines of the symbiotic binary Z And during its brightening at the end of 2002

    Full text link
    High resolution observations in the region of the lines Halpha, He II 4686 and Hgamma of the spectrum of the symbiotic binary Z And were performed during its small-amplitude brightening at the end of 2002. The profiles of the hydrogen lines were double-peaked. These profiles give a reason to suppose that the lines can be emitted mainly by an optically thin accretion disc. The Halpha line is strongly contaminated by the emission of the envelope, therefore for consideration of accretion disc properties we use the Hgamma line. The Halpha line had broad wings which are supposed to be determined mostly from radiation damping but high velocity stellar wind from the compact object in the system can also contribute to their appearance. The Hgamma line had a broad emission component which is assumed to be emitted mainly from the inner part of the accretion disc. The line He II 4686 had a broad emission component too, but it is supposed to appear in a region of a high velocity stellar wind. The outer radius of the accretion disc can be calculated from the shift between the peaks. Assuming, that the orbit inclination can ranges from 47^\circ to 76^\circ, we estimate the outer radius as 20 - 50 R_sun. The behaviour of the observed lines can be considered in the framework of the model proposed for interpretation of the line spectrum during the major 2000 - 2002 brightening of this binary.Comment: 19 pages, 5 figures. Accepted for publication in Astronomy Report

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    3D Gasdynamic Modelling of the Changes in the Flow Structure During Transition From Quiescent to Active State in Symbiotic Stars

    Full text link
    The results of 3D modelling of the flow structure in the classical symbiotic system Z~Andromedae are presented. Outbursts in systems of this type occur when the accretion rate exceeds the upper limit of the steady burning range. Therefore, in order to realize the transition from a quiescent to an active state it is necessary to find a mechanism able to sufficiently increase the accretion rate on a time scale typical to the duration of outburst development. Our calculations have confirmed the transition mechanism from quiescence to outburst in classic symbiotic systems suggested earlier on the basis of 2D calculations (Bisikalo et al, 2002). The analysis of our results have shown that for wind velocity of 20 km/s an accretion disc forms in the system. The accretion rate for the solution with the disc is ~22.5-25% of the mass loss rate of the donor, that is, ~4.5-5*10^(-8)Msun/yr for Z And. This value is in agreement with the steady burning range for white dwarf masses typically accepted for this system. When the wind velocity increases from 20 to 30 km/s the accretion disc is destroyed and the matter of the disc falls onto the accretor's surface. This process is followed by an approximately twofold accretion rate jump. The resulting accretion rate growth is sufficient for passing the upper limit of the steady burning range, thereby bringing the system into an active state. The time during which the accretion rate is above the steady burning value is in a very good agreement with observations. The analysis of the results presented here allows us to conclude that small variations in the donor's wind velocity can lead to the transition from the disc accretion to the wind accretion and, as a consequence, to the transition from quiescent to active state in classic symbiotic stars.Comment: 21 pages, 7 figure

    The GAMMA-400 space observatory: status and perspectives

    Get PDF
    The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ~100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee

    E2F1 and KIAA0191 expression predicts breast cancer patient survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling of human breast tumors has uncovered several molecular signatures that can divide breast cancer patients into good and poor outcome groups. However, these signatures typically comprise many genes (~50-100), and the prognostic tests associated with identifying these signatures in patient tumor specimens require complicated methods, which are not routinely available in most hospital pathology laboratories, thus limiting their use. Hence, there is a need for more practical methods to predict patient survival.</p> <p>Methods</p> <p>We modified a feature selection algorithm and used survival analysis to derive a 2-gene signature that accurately predicts breast cancer patient survival.</p> <p>Results</p> <p>We developed a tree based decision method that segregated patients into various risk groups using <it>KIAA0191 </it>expression in the context of <it>E2F1 </it>expression levels. This approach led to highly accurate survival predictions in a large cohort of breast cancer patients using only a 2-gene signature.</p> <p>Conclusions</p> <p>Our observations suggest a possible relationship between <it>E2F1 </it>and <it>KIAA0191 </it>expression that is relevant to the pathogenesis of breast cancer. Furthermore, our findings raise the prospect that the practicality of patient prognosis methods may be improved by reducing the number of genes required for analysis. Indeed, our <it>E2F1/KIAA0191 </it>2-gene signature would be highly amenable for an immunohistochemistry based test, which is commonly used in hospital laboratories.</p

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    Gravitating discs around black holes

    Full text link
    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.Comment: Accepted for publication in CQG; high-resolution figures will be available from http://www.iop.org/EJ/journal/CQ

    A Study of an Outburst in the Classical Symbiotic Star Z And in a Colliding-Wind Model

    Get PDF
    Two-dimensional gas-dynamical modeling of the mass-flow structure is used to study the outburst development in the classical symbiotic star Z And. The stage-by-stage rise of the light during the outburst can be explained in the framework of the colliding winds model. We suggest a scenario for the development of the outburst and study the possible influence of the changes of the flow structure on the light of the system. The model variations of the luminosity due to the formation of a system of shocks are in good agreement with the observed light variations
    corecore