490 research outputs found
Excitonic Funneling in Extended Dendrimers with Non-Linear and Random Potentials
The mean first passage time (MFPT) for photoexcitations diffusion in a
funneling potential of artificial tree-like light-harvesting antennae
(phenylacetylene dendrimers with generation-dependent segment lengths) is
computed. Effects of the non-linearity of the realistic funneling potential and
slow random solvent fluctuations considerably slow down the center-bound
diffusion beyond a temperature-dependent optimal size. Diffusion on a
disordered Cayley tree with a linear potential is investigated analytically. At
low temperatures we predict a phase in which the MFPT is dominated by a few
paths.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let
Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers
The center-bound excitonic diffusion on dendrimers subjected to several types
of non-homogeneous funneling potentials, is considered. We first study the
mean-first passage time (MFPT) for diffusion in a linear potential with
different types of correlated and uncorrelated random perturbations. Increasing
the funneling force, there is a transition from a phase in which the MFPT grows
exponentially with the number of generations , to one in which it does so
linearly. Overall the disorder slows down the diffusion, but the effect is much
more pronounced in the exponential compared to the linear phase. When the
disorder gives rise to uncorrelated random forces there is, in addition, a
transition as the temperature is lowered. This is a transition from a
high- regime in which all paths contribute to the MFPT to a low- regime
in which only a few of them do. We further explore the funneling within a
realistic non-linear potential for extended dendrimers in which the dependence
of the lowest excitonic energy level on the segment length was derived using
the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT
grows initially linearly with but crosses-over, beyond a molecular-specific
and -dependent optimal size, to an exponential increase. Finally we consider
geometrical disorder in the form of a small concentration of long connections
as in the {\it small world} model. Beyond a critical concentration of
connections the MFPT decreases significantly and it changes to a power-law or
to a logarithmic scaling with , depending on the strength of the funneling
force.Comment: 13 pages, 9 figure
Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach
We study voltage driven translocation of a single stranded (ss) DNA through a
membrane channel. Our model, based on a master equation (ME) approach,
investigates the probability density function (pdf) of the translocation times,
and shows that it can be either double or mono-peaked, depending on the system
parameters. We show that the most probable translocation time is proportional
to the polymer length, and inversely proportional to the first or second power
of the voltage, depending on the initial conditions. The model recovers
experimental observations on hetro-polymers when using their properties inside
the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR
Introduction to the Special Issue: Understanding the role of attentional control in the development of anxiety in childhood, adolescence and across the lifespan
Stereotyping starlings are more 'pessimistic'.
Negative affect in humans and animals is known to cause individuals to interpret ambiguous stimuli pessimistically, a phenomenon termed 'cognitive bias'. Here, we used captive European starlings (Sturnus vulgaris) to test the hypothesis that a reduction in environmental conditions, from enriched to non-enriched cages, would engender negative affect, and hence 'pessimistic' biases. We also explored whether individual differences in stereotypic behaviour (repetitive somersaulting) predicted 'pessimism'. Eight birds were trained on a novel conditional discrimination task with differential rewards, in which background shade (light or dark) determined which of two covered dishes contained a food reward. The reward was small when the background was light, but large when the background was dark. We then presented background shades intermediate between those trained to assess the birds' bias to choose the dish associated with the smaller food reward (a 'pessimistic' judgement) when the discriminative stimulus was ambiguous. Contrary to predictions, changes in the level of cage enrichment had no effect on 'pessimism'. However, changes in the latency to choose and probability of expressing a choice suggested that birds learnt rapidly that trials with ambiguous stimuli were unreinforced. Individual differences in performance of stereotypies did predict 'pessimism'. Specifically, birds that somersaulted were more likely to choose the dish associated with the smaller food reward in the presence of the most ambiguous discriminative stimulus. We propose that somersaulting is part of a wider suite of behavioural traits indicative of a stress response to captive conditions that is symptomatic of a negative affective state
Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory
Inspired by a quantum mechanical formalism to model concepts and their
disjunctions and conjunctions, we put forward in this paper a specific
hypothesis. Namely that within human thought two superposed layers can be
distinguished: (i) a layer given form by an underlying classical deterministic
process, incorporating essentially logical thought and its indeterministic
version modeled by classical probability theory; (ii) a layer given form under
influence of the totality of the surrounding conceptual landscape, where the
different concepts figure as individual entities rather than (logical)
combinations of others, with measurable quantities such as 'typicality',
'membership', 'representativeness', 'similarity', 'applicability', 'preference'
or 'utility' carrying the influences. We call the process in this second layer
'quantum conceptual thought', which is indeterministic in essence, and contains
holistic aspects, but is equally well, although very differently, organized
than logical thought. A substantial part of the 'quantum conceptual thought
process' can be modeled by quantum mechanical probabilistic and mathematical
structures. We consider examples of three specific domains of research where
the effects of the presence of quantum conceptual thought and its deviations
from classical logical thought have been noticed and studied, i.e. economics,
decision theory, and concept theories and which provide experimental evidence
for our hypothesis.Comment: 14 page
Deep Adaptation of Adult-Child Facial Expressions by Fusing Landmark Features
Imaging of facial affects may be used to measure psychophysiological
attributes of children through their adulthood, especially for monitoring
lifelong conditions like Autism Spectrum Disorder. Deep convolutional neural
networks have shown promising results in classifying facial expressions of
adults. However, classifier models trained with adult benchmark data are
unsuitable for learning child expressions due to discrepancies in
psychophysical development. Similarly, models trained with child data perform
poorly in adult expression classification. We propose domain adaptation to
concurrently align distributions of adult and child expressions in a shared
latent space to ensure robust classification of either domain. Furthermore, age
variations in facial images are studied in age-invariant face recognition yet
remain unleveraged in adult-child expression classification. We take
inspiration from multiple fields and propose deep adaptive FACial Expressions
fusing BEtaMix SElected Landmark Features (FACE-BE-SELF) for adult-child facial
expression classification. For the first time in the literature, a mixture of
Beta distributions is used to decompose and select facial features based on
correlations with expression, domain, and identity factors. We evaluate
FACE-BE-SELF on two pairs of adult-child data sets. Our proposed FACE-BE-SELF
approach outperforms adult-child transfer learning and other baseline domain
adaptation methods in aligning latent representations of adult and child
expressions
Recommended from our members
Interpretation of ambiguous situations: evidence for a dissociation between social and physical threat in Williams syndrome
There is increasing evidence that Williams syndrome (WS) is associated with elevated anxiety that is non-social in nature, including generalised anxiety and fears. To date very little research has examined the cognitive processes associated with this anxiety. In the present research, attentional bias for non-social threatening images in WS was examined using a dot-probe paradigm. Participants were 16 individuals with WS aged between 13 and 34 years and two groups of typically developing controls matched to the WS group on chronological age and attentional control ability respectively. The WS group exhibited a significant attention bias towards threatening images. In contrast, no bias was found for group matched on attentional control and a slight bias away from threat was found in the chronological age matched group. The results are contrasted with recent findings suggesting that individuals with WS do not show an attention bias for threatening faces and discussed in relation to neuroimaging research showing elevated amygdala activation in response to threatening non-social scenes in WS
- …
